def get_action(self, ob, sample=True, *args, **kwargs): self.eval_mode() t_ob = {key: torch_float(ob[key], device=cfg.alg.device) for key in ob} act_dist_cont, act_dist_disc, val = self.get_act_val(t_ob) action_cont = action_from_dist(act_dist_cont, sample=sample) action_discrete = action_from_dist(act_dist_disc, sample=sample) #print('456', action_discrete.shape, act_dist_disc) #print('123', action_cont.shape, act_dist_cont) log_prob_disc = action_log_prob(action_discrete, act_dist_disc) log_prob_cont = action_log_prob(action_cont, act_dist_cont) entropy_disc = action_entropy(act_dist_disc, log_prob_disc) entropy_cont = action_entropy(act_dist_cont, log_prob_cont) #print("cont:", torch_to_np(log_prob_cont).reshape(-1, 1)) log_prob = log_prob_cont + torch.sum(log_prob_disc, axis=1) #print(log_prob_cont.shape, log_prob_disc.shape) entropy = entropy_cont + torch.sum(entropy_disc, axis=1) action_info = dict(log_prob=torch_to_np(log_prob), entropy=torch_to_np(entropy), val=torch_to_np(val)) #print("cd", action_cont.shape, action_discrete.shape) action = np.concatenate( (torch_to_np(action_cont), torch_to_np(action_discrete)), axis=1) #print("action:", action) return action, action_info
def optim_preprocess(self, data): self.train_mode() for key, val in data.items(): data[key] = torch_float(val, device=cfg.alg.device) ob = data['ob'] #print(ob.shape) #from IPython import embed #embed() state = data['state'] action = data['action'] ret = data['ret'] adv = data['adv'] old_log_prob = data['log_prob'] old_val = data['val'] done = data['done'] hidden_state = data['hidden_state'] hidden_state = hidden_state.permute(1, 0, 2) act_dist_cont, act_dist_disc, val, out_hidden_state = self.get_act_val({"ob": ob, "state": state}, hidden_state=hidden_state, done=done) action_cont = action[:, :, :self.dim_cont] action_discrete = action[:, :, self.dim_cont:] #print('456', action_discrete.shape, act_dist_disc) #print('123', action_cont.shape, act_dist_cont) log_prob_disc = action_log_prob(action_discrete, act_dist_disc) log_prob_cont = action_log_prob(action_cont, act_dist_cont) entropy_disc = action_entropy(act_dist_disc, log_prob_disc) entropy_cont = action_entropy(act_dist_cont, log_prob_cont) #print("cont:", torch_to_np(log_prob_cont).reshape(-1, 1)) if len(log_prob_disc.shape) == 2: log_prob = log_prob_cont + torch.sum(log_prob_disc, axis=1) #print(log_prob_cont.shape, log_prob_disc.shape) entropy = entropy_cont + torch.sum(entropy_disc, axis=1) else: log_prob = log_prob_cont + torch.sum(log_prob_disc, axis=2) #print(log_prob_cont.shape, log_prob_disc.shape) entropy = entropy_cont + torch.sum(entropy_disc, axis=2) #print(val.shape, entropy.shape, log_prob.shape) #if not all([x.ndim == 1 for x in [val, entropy, log_prob]]): # raise ValueError('val, entropy, log_prob should be 1-dim!') processed_data = dict( val=val, old_val=old_val, ret=ret, log_prob=log_prob, old_log_prob=old_log_prob, adv=adv, entropy=entropy ) return processed_data
def optim_preprocess(self, data): self.train_mode() for key, val in data.items(): if val is not None: data[key] = torch_float(val, device=cfg.alg.device) ob = data['ob'] action = data['action'] ret = data['ret'] adv = data['adv'] old_log_prob = data['log_prob'] old_val = data['val'] done = data['done'] hidden_state = data['hidden_state'] hidden_state = hidden_state.permute(1, 0, 2) act_dist, val, out_hidden_state = self.get_act_val( ob, hidden_state=hidden_state, done=done) log_prob = action_log_prob(action, act_dist) entropy = action_entropy(act_dist, log_prob) processed_data = dict(val=val, old_val=old_val, ret=ret, log_prob=log_prob, old_log_prob=old_log_prob, adv=adv, entropy=entropy) return processed_data
def optim_preprocess(self, data): self.train_mode() for key, val in data.items(): data[key] = torch_float(val, device=cfg.alg.device) ob = data['ob'] state = data['state'] action = data['action'] ret = data['ret'] adv = data['adv'] old_log_prob = data['log_prob'] old_val = data['val'] act_dist, val = self.get_act_val({"ob": ob, "state": state}) log_prob = action_log_prob(action, act_dist) entropy = action_entropy(act_dist, log_prob) if not all([x.ndim == 1 for x in [val, entropy, log_prob]]): raise ValueError('val, entropy, log_prob should be 1-dim!') processed_data = dict(val=val, old_val=old_val, ret=ret, log_prob=log_prob, old_log_prob=old_log_prob, adv=adv, entropy=entropy) return processed_data
def update_q(self, obs, actions, next_obs, rewards, dones): q1 = self.q1((obs, actions))[0] q2 = self.q2((obs, actions))[0] with torch.no_grad(): next_act_dist = self.actor(next_obs)[0] next_actions = action_from_dist(next_act_dist, sample=True) nlog_prob = action_log_prob(next_actions, next_act_dist).unsqueeze(-1) nq1_tgt_val = self.q1_tgt((next_obs, next_actions))[0] nq2_tgt_val = self.q2_tgt((next_obs, next_actions))[0] nq_tgt_val = torch.min(nq1_tgt_val, nq2_tgt_val) - self.alpha * nlog_prob q_tgt_val = rewards + cfg.alg.rew_discount * (1 - dones) * nq_tgt_val loss_q1 = F.mse_loss(q1, q_tgt_val) loss_q2 = F.mse_loss(q2, q_tgt_val) loss_q = loss_q1 + loss_q2 self.q_optimizer.zero_grad() loss_q.backward() grad_norm = clip_grad(self.q_params, cfg.alg.max_grad_norm) self.q_optimizer.step() q_info = dict( q1_loss=loss_q1.item(), q2_loss=loss_q2.item(), vec_q1_val=torch_to_np(q1), vec_q2_val=torch_to_np(q2), vec_q_tgt_val=torch_to_np(q_tgt_val), ) q_info['q_grad_norm'] = grad_norm return q_info
def get_action(self, ob, sample=True, *args, **kwargs): self.eval_mode() t_ob = torch_float(ob, device=cfg.alg.device) act_dist, val = self.get_act_val(t_ob) action = action_from_dist(act_dist, sample=sample) log_prob = action_log_prob(action, act_dist) entropy = action_entropy(act_dist, log_prob) action_info = dict(log_prob=torch_to_np(log_prob), entropy=torch_to_np(entropy), val=torch_to_np(val)) return torch_to_np(action), action_info
def get_action(self, ob, sample=True, hidden_state=None, *args, **kwargs): self.eval_mode() t_ob = torch.from_numpy(ob).float().to(cfg.alg.device).unsqueeze(dim=1) act_dist, val, out_hidden_state = self.get_act_val( t_ob, hidden_state=hidden_state) action = action_from_dist(act_dist, sample=sample) log_prob = action_log_prob(action, act_dist) entropy = action_entropy(act_dist, log_prob) action_info = dict( log_prob=torch_to_np(log_prob.squeeze(1)), entropy=torch_to_np(entropy.squeeze(1)), val=torch_to_np(val.squeeze(1)), ) return torch_to_np(action.squeeze(1)), action_info, out_hidden_state
def optim_preprocess(self, data): self.train_mode() for key, val in data.items(): data[key] = torch_float(val, device=cfg.alg.device) ob = data['ob'] state = data['state'] action = data['action'] ret = data['ret'] adv = data['adv'] old_log_prob = data['log_prob'] old_val = data['val'] act_dist_cont, act_dist_disc, val = self.get_act_val({ "ob": ob, "state": state }) action_cont = action[:, :self.dim_cont] action_discrete = action[:, self.dim_cont:] log_prob_disc = action_log_prob(action_discrete, act_dist_disc) log_prob_cont = action_log_prob(action_cont, act_dist_cont) entropy_disc = action_entropy(act_dist_disc, log_prob_disc) entropy_cont = action_entropy(act_dist_cont, log_prob_cont) #print("cont:", torch_to_np(log_prob_cont).reshape(-1, 1)) log_prob = log_prob_cont + torch.sum(log_prob_disc, axis=1) entropy = entropy_cont + torch.sum(entropy_disc, axis=1) if not all([x.ndim == 1 for x in [val, entropy, log_prob]]): raise ValueError('val, entropy, log_prob should be 1-dim!') processed_data = dict(val=val, old_val=old_val, ret=ret, log_prob=log_prob, old_log_prob=old_log_prob, adv=adv, entropy=entropy) return processed_data
def update_pi(self, obs): freeze_model([self.q1, self.q2]) act_dist = self.actor(obs)[0] new_actions = action_from_dist(act_dist, sample=True) new_log_prob = action_log_prob(new_actions, act_dist).unsqueeze(-1) new_q1 = self.q1((obs, new_actions))[0] new_q2 = self.q2((obs, new_actions))[0] new_q = torch.min(new_q1, new_q2) loss_pi = (self.alpha * new_log_prob - new_q).mean() self.q_optimizer.zero_grad() self.pi_optimizer.zero_grad() loss_pi.backward() grad_norm = clip_grad(self.actor.parameters(), cfg.alg.max_grad_norm) self.pi_optimizer.step() pi_info = dict(pi_loss=loss_pi.item(), pi_neg_log_prob=-new_log_prob.mean().item()) pi_info['pi_grad_norm'] = grad_norm unfreeze_model([self.q1, self.q2]) return pi_info
def get_action(self, ob, sample=True, hidden_state=None, *args, **kwargs): self.eval_mode() if type(ob) is dict: t_ob = { key: torch_float(ob[key], device=cfg.alg.device) for key in ob } else: t_ob = torch.from_numpy(ob).float().to( cfg.alg.device).unsqueeze(dim=1) act_dist, val, out_hidden_state = self.get_act_val( t_ob, hidden_state=hidden_state) action = action_from_dist(act_dist, sample=sample) log_prob = action_log_prob(action, act_dist) entropy = action_entropy(act_dist, log_prob) in_hidden_state = torch_to_np( hidden_state) if hidden_state is not None else hidden_state action_info = dict(log_prob=torch_to_np(log_prob.squeeze(1)), entropy=torch_to_np(entropy.squeeze(1)), val=torch_to_np(val.squeeze(1)), in_hidden_state=in_hidden_state) return torch_to_np(action.squeeze(1)), action_info, out_hidden_state