コード例 #1
0
ファイル: test_lfw.py プロジェクト: yamins81/eccv12
def fuzz_config(config):
    print config
    imgs = lfw.get_images('float32', preproc=config['preproc'])
    try:
        mm = lfw.slm_memmap(config['slm'], imgs,
                name='_test_thoreano_fuzz')
    except InvalidDescription:
        return

    # -- evaluate a single example
    a = mm[0]

    # -- evaluate a batch
    b = mm[10:14]

    # --re-evaluate
    ra = mm[0]
    rb = mm[10:14]

    assert np.all(a == ra)
    assert np.all(b == rb)

    lfw.delete_memmap(mm)
コード例 #2
0
ファイル: test_slm.py プロジェクト: yamins81/eccv12
    def test(self):
                                            
        all_test_pair_inds = self.test_pair_inds
        
        try:
            x = scipy.io.loadmat(self.matfile)
        except:
            raise nose.SkipTest()
        x_train_fnames_0 = map(string.strip, map(str, x['train_fnames'][::2]))
        x_train_fnames_1 = map(string.strip, map(str, x['train_fnames'][1::2]))
        x_train_labels = map(int, x['train_labels'])
        
        
        dataset = skdata.lfw.Aligned()
        train_fnames_0, train_fnames_1, train_labels = dataset.raw_verification_task(split='DevTrain')
        train_labels = 2*train_labels - 1
        train_fnames_0 = ['/'.join(_f.split('/')[-2:]) for _f in map(str, train_fnames_0)]
        train_fnames_1 = ['/'.join(_f.split('/')[-2:]) for _f in map(str, train_fnames_1)]
        fnames, _l = dataset.raw_classification_task()
        fnames = map(str, ['/'.join(_f.split('/')[-2:]) for _f in fnames])
        pairs = verification_pairs(split='DevTrain')
        
        for _ind in all_test_pair_inds:
            assert train_fnames_0[_ind] == x_train_fnames_0[_ind]
            assert train_fnames_1[_ind] == x_train_fnames_1[_ind]
            assert fnames[pairs[0][_ind]] == train_fnames_0[_ind] 
            assert fnames[pairs[1][_ind]] == train_fnames_1[_ind] 
            assert pairs[2][_ind] == train_labels[_ind], str((pairs[2][_ind], train_labels[_ind]))
            assert pairs[2][_ind] == x_train_labels[_ind], str((pairs[2][_ind], x_train_labels[_ind]))
            
        pairs = (pairs[0][all_test_pair_inds],
                 pairs[1][all_test_pair_inds],
                 pairs[2][all_test_pair_inds])
        
        x_kern = x['kernel_traintrain'][all_test_pair_inds][:, all_test_pair_inds]
        
        namebase = self.namebase
        image_features = slm_memmap(self.desc,
                                    get_images('float32'),
                                    namebase + '_img_feat')
        #print np.asarray(image_features[:4])
        pf_cache, matches = pairs_memmap(pairs,
                                              image_features,
                                              comparison_name=self.comparison,
                                              name=namebase + '_pairs_DevTrain')

        
        pair_features = np.asarray(pf_cache)
        delete_memmap(image_features)
        pairs_cleanup((pf_cache, None))
        
        assert (pairs[2] == matches).all()
        
        #XXX: normalize the pair_features here in some way? do we have to compute
        #all the features?
        def normalize(_f):
            _f = _f - _f.mean(0)
            fstd = _f.std(0)
            fstd[fstd == 0] = 1
            _f = _f / fstd
            return _f
            
        pair_features = normalize(pair_features)
        kern = np.dot(pair_features, pair_features.T)
        
        normdiff = np.abs((kern - x_kern) / x_kern)
        normdiffmax = normdiff.max()
    
        if normdiffmax > .1:
            print 'kern', kern
            print 'x_kern', x_kern
            assert 0, ('too much error: %s' % normdiffmax)