コード例 #1
0
ファイル: test_point.py プロジェクト: jadeblaquiere/ecpy
            test = (x*xi) % p
            #print x, xi, x*xi, test
            if x != 0:
                assert test == 1
    
    print('Setting up Generators')
    G = _curve['G']
    print('ref Gen ' + str(G))
    Gpt = Point(G[0],G[1])
    print('Point Gen ' + str(Gpt))
    GenG = Generator.init(G[0],G[1])
    print('Generator Gen ' + str(GenG))
    GenG2 = Generator.init(G[0],G[1])
    print('Generator Gen ' + str(GenG2))
    assert GenG2 is GenG
    assert Gpt.is_valid()
    assert GenG.is_valid()
    print('Generator uncompressed ' + str(GenG.uncompressed_format()))
    InfP = Point()
    ex = InfP.compress()
    exraw = InfP.uncompressed_format()
    InfP2 = Point.decompress(ex)
    InfP3 = Point.decompress(exraw)
    InfP4 = Point.decompress(ex.decode())
    assert ex == exraw
    assert InfP == InfP2
    assert InfP == InfP3
    assert InfP == InfP4
    print('Point @ Infinity')

    if True:
コード例 #2
0
 def __init__(self, nbit, b=None, u=None, G=None, friendly=True):
     # first, find umax, umin such that p < 2**nbit, p > 2**(nbit - 1)
     # p = 36u**4 + 36u**3 + 24u**2 + 6u + 1
     # n = 36u**4 + 36u**3 + 18u**2 + 6u + 1
     limit = pow(2, nbit)
     if u is None:
         # derive u randomly based on nbit
         # coarse upper, lower guesses
         upr = int((limit / 36)**0.25)
         lwr = 0
         mid = (upr + lwr) >> 1
         # midpoint algorithm
         while ((mid != upr) or (mid != lwr)):
             mid = (upr + lwr) >> 1
             pu = _pfunc(upr)
             pl = _pfunc(lwr)
             pm = _pfunc(mid)
             # print("limit goal = %d" % (limit))
             # print("lower p(%d) = %d" % (lwr, pl))
             # print("mid p(%d) = %d" % (mid, pm))
             # print("upper p(%d) = %d" % (upr, pu))
             # print("")
             # pm should be odd, limit even. They should never meet
             assert (pm != limit)
             if pm < limit:
                 if lwr == mid:
                     break
                 lwr = mid
             else:
                 upr = mid
         umax = mid
         # repeat for limit = 2 ** (nbit-1)
         limit = pow(2, (nbit - 1))
         upr = int((limit / 36)**0.25)
         lwr = 0
         mid = (upr + lwr) >> 1
         while ((mid != upr) or (mid != lwr)):
             mid = (upr + lwr) >> 1
             pu = _pfunc(upr)
             pl = _pfunc(lwr)
             pm = _pfunc(mid)
             #pm should be odd, limit should be even. They should never meet
             assert (pm != limit)
             if pm < limit:
                 if lwr == mid:
                     break
                 lwr = mid
             else:
                 upr = mid
         umin = mid
     else:
         # u is a parameter
         umax = u
         umin = umax
     print("limit goal = %X" % (pow(2, nbit)))
     print("umax = %X, pmax = %X" % (umax, _pfunc(umax)))
     print("umin = %X, pmin = %X" % (umin, _pfunc(umin)))
     print("(%d potential u values, approx 2 ** %d)" %
           ((umax - umin) + 1, int(math.log((umax - umin) + 1, 2) + 0.5)))
     # choose u at random until valid solution, follow algorithm 1 from:
     # https://www.cryptojedi.org/papers/pfcpo.pdf
     self.u = 0
     if u is None:
         while True:
             urand = random.randint(umin, umax)
             #urand = 6518589491078791937
             p = _pfunc(urand)
             #assert p == 65000549695646603732796438742359905742825358107623003571877145026864184071783
             if isPrime(p) != True:
                 continue
             n = _nfunc(urand)
             #assert n == 65000549695646603732796438742359905742570406053903786389881062969044166799969
             if isPrime(n) != True:
                 continue
             if (p % 4) == 3:
                 if ((p * p) % 16) == 9:
                     self.u = urand
                     self.p = p
                     self.n = n
                     break
     else:
         p = _pfunc(umax)
         n = _nfunc(umax)
         self.u = umax
         self.p = p
         self.n = n
     if b is not None:
         friendly = False
     # print("u = %X (%d)" % (self.u, self.u))
     # print("p = %X (%d)" % (self.p, self.p))
     # print("n = %X (%d)" % (self.n, self.n))
     if friendly:
         # print("searching for b")
         while True:
             #select friendly parameters per Pereira et al
             #we happen to choose d as pure imaginary such that Xi is not
             c = random.randint(0, self.p)
             di = random.randint(0, self.p)
             b = pow(c, 4, self.p) - pow(di, 6, self.p)
             if b != (b % self.p):
                 continue
             if _legendre(b + 1, self.p) != 1:
                 continue
             y = _mod_sqrt(b + 1, self.p)
             # print("trying b = %X, y = %X, y**2 = %X" % (b, y, ((y * y) % p)))
             p2 = self.p * self.p
             #
             curve1 = {
                 'p': self.p,
                 'a': 0,
                 'b': b,
                 'n': self.n,
                 'bits': nbit
             }
             Generator.set_curve(curve1)
             P = Point(pow(di, 2, self.p), pow(c, 2, self.p))
             assert P.is_valid()
             Pnm1 = (self.n - 1) * P
             Ptst = Pnm1 + P
             if Ptst.is_infinite != True:
                 continue
             self.G = Generator(pow(di, 2, self.p), pow(c, 2, self.p))
             self.b = b
             Xi = pow(c, 2, p2) + pow(di, 3, p2)
             bprime = (b * _modinv(Xi, p2))
             h = (2 * self.p) - self.n
             curve2 = {
                 'p': self.p * self.p,
                 'a': 0,
                 'b': bprime,
                 'n': self.n,
                 'bits': 2 * nbit
             }
             break
     else:
         if G is None:
             if b is None:
                 b = 0
             else:
                 b = b - 1
             while True:
                 b = b + 1
                 if _legendre(b + 1, self.p) != 1:
                     # print("b = %d but %d is not quadratic residue" % (b, b+1))
                     continue
                 y = _mod_sqrt(b + 1, self.p)
                 # print("trying b = %X, y = %X, y**2 = %X" % (b, y, ((y * y) % p)))
                 curve = {
                     'p': self.p,
                     'a': 0,
                     'b': b,
                     'n': self.n,
                     'bits': nbit
                 }
                 Generator.set_curve(curve)
                 P = Point(1, y)
                 assert P.is_valid()
                 Pnm1 = (self.n - 1) * P
                 Ptst = Pnm1 + P
                 Pa = P.affine()
                 if Ptst.is_infinite == True:
                     self.G = Generator(Pa[0], Pa[1])
                     self.b = b
                     break
         else:
             assert b is not None
             curve = {
                 'p': self.p,
                 'a': 0,
                 'b': b,
                 'n': self.n,
                 'bits': nbit
             }
             Generator.set_curve(curve)
             P = Point(G[0], G[1])
             # print("P = %s" % (P.uncompressed_format()))
             assert P.is_valid()
             Pnm1 = (self.n - 1) * P
             Ptst = Pnm1 + P
             Pa = P.affine()
             assert Ptst.is_infinite == True
             self.G = Generator(Pa[0], Pa[1])
             self.b = b
     #self.p = _pfunc(self.u)
     #self.n = _nfunc(self.u)
     print("u = %X (%d)" % (self.u, self.u))
     print("p = %X (%d)" % (self.p, self.p))
     print("n = %X (%d)" % (self.n, self.n))
     print("b = %X (%d)" % (self.b, self.b))
     print("P (compressed) = %s" % (self.G.compress()))
     print("P (uncompressed) = %s" % (self.G.uncompressed_format()))
コード例 #3
0
        # n = random.randint(0,q-1)
        n = i
        hn = iH.hashval(n)
        assert hn == iH2.hashval(n)
        ncollisions = 0
        coll = []
        for j in range(0, q):
            hc = iH.hashval(j)
            if (i != j) and (hc == hn):
                ncollisions += 1
                # print("collision i, j, hash = ", i, j, hc)
                coll.append(j)
        hp = Point(infinity=True, curve=curve)
        if hn[1] == False:
            hp = Point.decompress(hn[0])
        ha = hp.affine()
        han = (ha[0], ha[1], hp.is_infinite)
        if ncollisions > 0:
            print("n, iH(n) = ", n, han, ":", ncollisions, "collisions", coll)
        else:
            print("n, iH(n) = ", n, han)
        x,y = han[0], han[1]
        R = Point(x, y, infinity=han[2])
        assert R.is_valid()
        Q = R + G
        assert Q.is_valid()
        rt = (pow(x, 3, q) + (a * x) + b) % q
        lf = pow(y, 2, q)
        if han[2] != True:
            assert rt == lf