コード例 #1
0
ファイル: declarative.py プロジェクト: joe2hpimn/edgedb
    def _init_objtypes(self, objtypes):
        for objtype, objtypedecl in objtypes.items():
            self._parse_source_props(objtype, objtypedecl)

            if objtypedecl.fields:
                self._parse_field_setters(objtype, objtypedecl.fields)

            for linkdecl in objtypedecl.links:
                link_name = linkdecl.name
                if len(link_name) > s_pointers.MAX_NAME_LENGTH:
                    raise errors.SchemaDefinitionError(
                        f'link or property name length exceeds the maximum of '
                        f'{s_pointers.MAX_NAME_LENGTH} characters',
                        context=linkdecl.context)

                if linkdecl.extends:
                    link_bases = [
                        self._get_ref_type(b) for b in linkdecl.extends
                    ]
                else:
                    link_bases = [
                        self._schema.get(s_links.Link.get_default_base_name())
                    ]

                if linkdecl.expr is not None:
                    # This is a computable, but we cannot interpret
                    # the expression yet, so set the target to `any`
                    # temporarily.
                    _targets = [s_pseudo.Any.instance]

                else:
                    _targets = [self._get_ref_type(t) for t in linkdecl.target]

                if len(_targets) == 1:
                    # Usual case, just one target
                    spectargets = None
                    target = _targets[0]
                else:
                    # Multiple explicit targets, create common virtual
                    # parent and use it as target.
                    spectargets = s_obj.ObjectSet.create(
                        self._schema, _targets)

                    self._schema, target = s_inh.create_virtual_parent(
                        self._schema, _targets,
                        module_name=self._module.get_name(self._schema))

                    self._schema = target.set_field_value(
                        self._schema, 'is_derived', True)

                if (not target.is_any() and
                        not isinstance(target, s_objtypes.ObjectType)):
                    raise errors.InvalidLinkTargetError(
                        f'invalid link target, expected object type, got '
                        f'{target.__class__.__name__}',
                        context=linkdecl.target[0].context
                    )

                new_props = {
                    'sourcectx': linkdecl.context,
                }

                name = self._get_derived_ptr_name(link_name, objtype)
                self._schema, link = link_bases[0].derive(
                    self._schema, objtype, target,
                    attrs=new_props, merge_bases=link_bases,
                    apply_defaults=not linkdecl.inherited,
                    name=name)

                if linkdecl.cardinality is None:
                    if linkdecl.expr is None:
                        cardinality = qltypes.Cardinality.ONE
                    else:
                        cardinality = None
                else:
                    cardinality = linkdecl.cardinality

                self._schema = link.update(self._schema, {
                    'spectargets': spectargets,
                    'required': bool(linkdecl.required),
                    'cardinality': cardinality,
                    'declared_inherited': linkdecl.inherited,
                })

                if linkdecl.on_target_delete is not None:
                    self._schema = link.set_field_value(
                        self._schema,
                        'on_target_delete',
                        linkdecl.on_target_delete.cascade)

                if linkdecl.expr is not None:
                    self._schema = link.set_field_value(
                        self._schema, 'computable', True)

                self._parse_source_props(link, linkdecl)
                self._schema = objtype.add_pointer(self._schema, link)

        for objtype, objtypedecl in objtypes.items():
            if objtypedecl.indexes:
                self._parse_subject_indexes(objtype, objtypedecl)

            if objtypedecl.constraints:
                self._parse_subject_constraints(objtype, objtypedecl)
コード例 #2
0
def compile_operator(qlexpr: qlast.Base, op_name: str,
                     qlargs: typing.List[qlast.Base], *,
                     ctx: context.ContextLevel) -> irast.OperatorCall:

    env = ctx.env
    schema = env.schema
    opers = schema.get_operators(op_name, module_aliases=ctx.modaliases)

    if opers is None:
        raise errors.QueryError(
            f'no operator matches the given name and argument types',
            context=qlexpr.context)

    args = []
    for ai, qlarg in enumerate(qlargs):
        with ctx.newscope(fenced=True) as fencectx:
            # We put on a SET OF fence preemptively in case this is
            # a SET OF arg, which we don't know yet due to polymorphic
            # matching.  We will remove it if necessary in `finalize_args()`.
            arg_ir = setgen.ensure_set(dispatch.compile(qlarg, ctx=fencectx),
                                       ctx=fencectx)

            arg_ir = setgen.scoped_set(setgen.ensure_stmt(arg_ir,
                                                          ctx=fencectx),
                                       ctx=fencectx)

        arg_type = inference.infer_type(arg_ir, ctx.env)
        if arg_type is None:
            raise errors.QueryError(
                f'could not resolve the type of operand '
                f'#{ai} of {op_name}',
                context=qlarg.context)

        args.append((arg_type, arg_ir))

    matched = None
    # Some 2-operand operators are special when their operands are
    # arrays or tuples.
    if len(args) == 2:
        coll_opers = None
        # If both of the args are arrays or tuples, potentially
        # compile the operator for them differently than for other
        # combinations.
        if args[0][0].is_tuple() and args[1][0].is_tuple():
            # Out of the candidate operators, find the ones that
            # correspond to tuples.
            coll_opers = [
                op for op in opers if all(
                    param.get_type(schema).is_tuple()
                    for param in op.get_params(schema).objects(schema))
            ]

        elif args[0][0].is_array() and args[1][0].is_array():
            # Out of the candidate operators, find the ones that
            # correspond to arrays.
            coll_opers = [
                op for op in opers if all(
                    param.get_type(schema).is_array()
                    for param in op.get_params(schema).objects(schema))
            ]

        # Proceed only if we have a special case of collection operators.
        if coll_opers:
            # Then check if they are recursive (i.e. validation must be
            # done recursively for the subtypes). We rely on the fact that
            # it is forbidden to define an operator that has both
            # recursive and non-recursive versions.
            if not coll_opers[0].get_recursive(schema):
                # The operator is non-recursive, so regular processing
                # is needed.
                matched = polyres.find_callable(coll_opers,
                                                args=args,
                                                kwargs={},
                                                ctx=ctx)

            else:
                # Ultimately the operator will be the same, regardless of the
                # specific operand types, as long as it passed validation, so
                # we just use the first operand type for the purpose of
                # finding the callable.
                matched = polyres.find_callable(coll_opers,
                                                args=[(args[0][0], args[0][1]),
                                                      (args[0][0], args[1][1])
                                                      ],
                                                kwargs={},
                                                ctx=ctx)

                # Now that we have an operator, we need to validate that it
                # can be applied to the tuple or array elements.
                submatched = validate_recursive_operator(opers,
                                                         args[0],
                                                         args[1],
                                                         ctx=ctx)

                if len(submatched) != 1:
                    # This is an error. We want the error message to
                    # reflect whether no matches were found or too
                    # many, so we preserve the submatches found for
                    # this purpose.
                    matched = submatched

    # No special handling match was necessary, find a normal match.
    if matched is None:
        matched = polyres.find_callable(opers, args=args, kwargs={}, ctx=ctx)

    in_polymorphic_func = (ctx.env.func_params is not None
                           and ctx.env.func_params.has_polymorphic(env.schema))

    in_abstract_constraint = (
        in_polymorphic_func
        and ctx.env.parent_object_type is s_constr.Constraint)

    if not in_polymorphic_func:
        matched = [
            call for call in matched
            if not call.func.get_is_abstract(env.schema)
        ]

    if len(matched) == 1:
        matched_call = matched[0]
    else:
        if len(args) == 2:
            ltype = args[0][0].material_type(env.schema)
            rtype = args[1][0].material_type(env.schema)

            types = (f'{ltype.get_displayname(env.schema)!r} and '
                     f'{rtype.get_displayname(env.schema)!r}')
        else:
            types = ', '.join(
                repr(a[0].material_type(env.schema).get_displayname(
                    env.schema)) for a in args)

        if not matched:
            raise errors.QueryError(
                f'operator {str(op_name)!r} cannot be applied to '
                f'operands of type {types}',
                hint='Consider using an explicit type cast or a conversion '
                'function.',
                context=qlexpr.context)
        elif len(matched) > 1:
            if in_abstract_constraint:
                matched_call = matched[0]
            else:
                detail = ', '.join(
                    f'`{m.func.get_display_signature(ctx.env.schema)}`'
                    for m in matched)
                raise errors.QueryError(
                    f'operator {str(op_name)!r} is ambiguous for '
                    f'operands of type {types}',
                    hint=f'Possible variants: {detail}.',
                    context=qlexpr.context)

    args, params_typemods = finalize_args(matched_call, ctx=ctx)

    oper = matched_call.func
    env.schema_refs.add(oper)
    oper_name = oper.get_shortname(env.schema)

    matched_params = oper.get_params(env.schema)
    rtype = matched_call.return_type

    if oper_name in {'std::UNION', 'std::IF'} and rtype.is_object_type():
        # Special case for the UNION and IF operators, instead of common
        # parent type, we return a union type.
        if oper_name == 'std::UNION':
            larg, rarg = (a.expr for a in args)
        else:
            larg, rarg = (a.expr for a in args[1:])

        left_type = setgen.get_set_type(larg,
                                        ctx=ctx).material_type(ctx.env.schema)
        right_type = setgen.get_set_type(rarg,
                                         ctx=ctx).material_type(ctx.env.schema)

        if left_type.issubclass(env.schema, right_type):
            rtype = right_type
        elif right_type.issubclass(env.schema, left_type):
            rtype = left_type
        else:
            env.schema, rtype = s_inh.create_virtual_parent(
                env.schema, [left_type, right_type])

    is_polymorphic = (any(
        p.get_type(env.schema).is_polymorphic(env.schema)
        for p in matched_params.objects(env.schema)) and oper.get_return_type(
            env.schema).is_polymorphic(env.schema))

    from_op = oper.get_from_operator(env.schema)
    if (from_op is not None and oper.get_code(env.schema) is None
            and oper.get_from_function(env.schema) is None
            and not in_polymorphic_func):
        sql_operator = tuple(from_op)
    else:
        sql_operator = None

    node = irast.OperatorCall(
        args=args,
        func_module_id=env.schema.get_global(s_mod.Module,
                                             oper_name.module).id,
        func_shortname=oper_name,
        func_polymorphic=is_polymorphic,
        func_sql_function=oper.get_from_function(env.schema),
        sql_operator=sql_operator,
        force_return_cast=oper.get_force_return_cast(env.schema),
        volatility=oper.get_volatility(env.schema),
        operator_kind=oper.get_operator_kind(env.schema),
        params_typemods=params_typemods,
        context=qlexpr.context,
        typeref=irtyputils.type_to_typeref(env.schema, rtype),
        typemod=oper.get_return_typemod(env.schema),
    )

    return setgen.ensure_set(node, typehint=rtype, ctx=ctx)