def test_dirichlet(self): with self.test_session(): self._test(Dirichlet(tf.zeros(3)), [], [], [3]) self._test(Dirichlet(tf.zeros([2, 3])), [], [2], [3]) self._test(Dirichlet(tf.zeros(3), sample_shape=1), [1], [], [3]) self._test(Dirichlet(tf.zeros(3), sample_shape=[2, 1]), [2, 1], [], [3])
def _test(alpha, n): rv = Dirichlet(alpha=alpha) rv_sample = rv.sample(n) x = rv_sample.eval() x_tf = tf.constant(x, dtype=tf.float32) alpha = alpha.eval() assert np.allclose(rv.log_prob(x_tf).eval(), dirichlet_logpdf_vec(x, alpha), atol=1e-3)
def _test(alpha, n): rv = Dirichlet(alpha=alpha) rv_sample = rv.sample(n) x = rv_sample.eval() x_tf = tf.constant(x, dtype=tf.float32) alpha = alpha.eval() assert np.allclose(rv.log_prob(x_tf).eval(), dirichlet_logpdf_vec(x, alpha))
def __init__(self, K, D, N, nu, use_param=False): self.K = K # number of topics self.D = D # number of documents self.N = N # number of words of each document self.nu = nu self.alpha = alpha = tf.zeros([K]) + 0.1 self.sigmasq = InverseGamma(tf.ones(nu), tf.ones(nu), sample_shape=K) self.sigma = sigma = tf.sqrt(self.sigmasq) self.mu = mu = Normal(tf.zeros(nu), tf.ones(nu), sample_shape=K) self.theta = theta = [None] * D self.z = z = [None] * D self.w = w = [None] * D for d in range(D): theta[d] = Dirichlet(alpha) if use_param: w[d] = ParamMixture(mixing_weights=theta[d], component_params={ 'loc': mu, 'scale_diag': sigma }, component_dist=MultivariateNormalDiag, sample_shape=N[d]) z[d] = w[d].cat else: z[d] = Categorical(probs=theta[d], sample_shape=N[d]) components = [ MultivariateNormalDiag(loc=tf.gather(mu, k), scale_diag=tf.gather(self.sigma, k), sample_shape=N[d]) for k in range(K) ] w[d] = Mixture(cat=z[d], components=components, sample_shape=N[d])
def test_simplex(self): with self.test_session(): x = Dirichlet([1.1, 1.2, 1.3, 1.4]) y = ed.transform(x) self.assertIsInstance(y, TransformedDistribution) sample = y.sample(10, seed=1).eval() self.assertSamplePosNeg(sample)
def run(self, adj_mat, n_iter=1000): assert adj_mat.shape[0] == adj_mat.shape[1] n_node = adj_mat.shape[0] # model gamma = Dirichlet(concentration=tf.ones([self.n_cluster])) Pi = Beta(concentration0=tf.ones([self.n_cluster, self.n_cluster]), concentration1=tf.ones([self.n_cluster, self.n_cluster])) Z = Multinomial(total_count=1., probs=gamma, sample_shape=n_node) X = Bernoulli(probs=tf.matmul(Z, tf.matmul(Pi, tf.transpose(Z)))) # inference (point estimation) qgamma = PointMass(params=tf.nn.softmax( tf.Variable(tf.random_normal([self.n_cluster])))) qPi = PointMass(params=tf.nn.sigmoid( tf.Variable(tf.random_normal([self.n_cluster, self.n_cluster])))) qZ = PointMass(params=tf.nn.softmax( tf.Variable(tf.random_normal([n_node, self.n_cluster])))) # map estimation inference = ed.MAP({gamma: qgamma, Pi: qPi, Z: qZ}, data={X: adj_mat}) inference.initialize(n_iter=n_iter) tf.global_variables_initializer().run() for _ in range(inference.n_iter): info_dict = inference.update() inference.print_progress(info_dict) inference.finalize() return qZ.mean().eval().argmax(axis=1)
def __init__(self, num_data, num_cluster, vector_dim, num_mcmc_sample): self.K = num_cluster self.D = vector_dim self.N = num_data self.pi = Dirichlet(tf.ones(self.K)) self.mu = Normal(tf.zeros(self.D), tf.ones(self.D), sample_shape=self.K) self.sigmasq = InverseGamma(tf.ones(self.D), tf.ones(self.D), sample_shape=self.K) self.x = ParamMixture(self.pi, { 'loc': self.mu, 'scale_diag': tf.sqrt(self.sigmasq) }, MultivariateNormalDiag, sample_shape=self.N) self.z = self.x.cat self.T = num_mcmc_sample # number of MCMC samples self.qpi = Empirical(tf.Variable(tf.ones([self.T, self.K]) / self.K)) self.qmu = Empirical(tf.Variable(tf.zeros([self.T, self.K, self.D]))) self.qsigmasq = Empirical( tf.Variable(tf.ones([self.T, self.K, self.D]))) self.qz = Empirical( tf.Variable(tf.zeros([self.T, self.N], dtype=tf.int32)))
def _test(shape, n): K = shape[-1] rv = Dirichlet(shape, alpha=tf.constant(1.0 / K, shape=shape)) rv_sample = rv.sample(n) x = rv_sample.eval() x_tf = tf.constant(x, dtype=tf.float32) alpha = rv.alpha.eval() if len(shape) == 1: assert np.allclose( rv.log_prob_idx((), x_tf).eval(), dirichlet_logpdf_vec(x[:, :], alpha[:])) elif len(shape) == 2: for i in range(shape[0]): assert np.allclose( rv.log_prob_idx((i, ), x_tf).eval(), dirichlet_logpdf_vec(x[:, i, :], alpha[i, :])) else: assert False
def _test(shape, n): K = shape[-1] rv = Dirichlet(shape, alpha=tf.constant(1.0/K, shape=shape)) rv_sample = rv.sample(n) x = rv_sample.eval() x_tf = tf.constant(x, dtype=tf.float32) alpha = rv.alpha.eval() if len(shape) == 1: assert np.allclose( rv.log_prob_idx((), x_tf).eval(), dirichlet_logpdf_vec(x[:, :], alpha[:])) elif len(shape) == 2: for i in range(shape[0]): assert np.allclose( rv.log_prob_idx((i, ), x_tf).eval(), dirichlet_logpdf_vec(x[:, i, :], alpha[i, :])) else: assert False
def model_stationary_dirichlet_categorical_edward(n_states, chain_len, batch_size): """ Models a stationary Dirichlet-Categorical Markov Chain in Edward """ tf.reset_default_graph() # create default starting state probability vector pi_0 = Dirichlet(tf.ones(n_states)) x_0 = Categorical(probs=pi_0, sample_shape=batch_size) # transition matrix pi_T = Dirichlet(tf.ones([n_states, n_states])) x = [] for _ in range(chain_len): x_tm1 = x[-1] if x else x_0 x_t = Categorical(probs=tf.gather(pi_T, x_tm1)) x.append(x_t) return x, pi_0, pi_T
def main(_): # DATA pi_true = np.random.dirichlet(np.array([20.0, 30.0, 10.0, 10.0])) z_data = np.array([np.random.choice(FLAGS.K, 1, p=pi_true)[0] for n in range(FLAGS.N)]) print("pi: {}".format(pi_true)) # MODEL pi = Dirichlet(tf.ones(4)) z = Categorical(probs=pi, sample_shape=FLAGS.N) # INFERENCE qpi = Dirichlet(tf.nn.softplus( tf.get_variable("qpi/concentration", [FLAGS.K]))) inference = ed.KLqp({pi: qpi}, data={z: z_data}) inference.run(n_iter=1500, n_samples=30) sess = ed.get_session() print("Inferred pi: {}".format(sess.run(qpi.mean())))
def __init__(self, K, V, D, N): self.K = K # number of topics self.V = V # vocabulary size self.D = D # number of documents self.N = N # number of words of each document self.alpha = alpha = tf.zeros([K]) + 0.1 self.yita = yita = tf.zeros([V]) + 0.01 self.theta = [None] * D self.beta = Dirichlet(yita, sample_shape=K) self.z = [None] * D self.w = [None] * D temp = self.beta for d in range(D): self.theta[d] = Dirichlet(alpha) self.w[d] = ParamMixture(mixing_weights=self.theta[d], component_params={'probs': temp}, component_dist=Categorical, sample_shape=N[d], validate_args=False) self.z[d] = self.w[d].cat
def main(_): # DATA pi_true = np.random.dirichlet(np.array([20.0, 30.0, 10.0, 10.0])) z_data = np.array( [np.random.choice(FLAGS.K, 1, p=pi_true)[0] for n in range(FLAGS.N)]) print("pi: {}".format(pi_true)) # MODEL pi = Dirichlet(tf.ones(4)) z = Categorical(probs=pi, sample_shape=FLAGS.N) # INFERENCE qpi = Dirichlet( tf.nn.softplus(tf.get_variable("qpi/concentration", [FLAGS.K]))) inference = ed.KLqp({pi: qpi}, data={z: z_data}) inference.run(n_iter=1500, n_samples=30) sess = ed.get_session() print("Inferred pi: {}".format(sess.run(qpi.mean())))
def model_non_stationary_dirichlet_categorical(n_states, chain_len, batch_size): """ Models a non-stationary Dirichlet-Categorical Markov Chain in Edward """ tf.reset_default_graph() # create default starting state probability vector pi_0 = Dirichlet(tf.ones(n_states)) x_0 = Categorical(probs=pi_0, sample_shape=batch_size) pi_T, x = [], [] for _ in range(chain_len): x_tm1 = x[-1] if x else x_0 # transition matrix, one per position in the chain: # i.e. we now condition both on previous state and age of the loan pi_T_t = Dirichlet(tf.ones([n_states, n_states])) x_t = Categorical(probs=tf.gather(pi_T_t, x_tm1)) pi_T.append(pi_T_t) x.append(x_t) return x, pi_0, pi_T
def model_stationary_dirichlet_categorical_tfp(n_states, chain_len, batch_size): """ Models a stationary Dirichlet-Categorical Markov Chain in TensorFlow Probability/Edward2 """ tf.reset_default_graph() # create default starting state probability vector pi_0 = Dirichlet(tf.ones(n_states)) x_0 = Categorical(probs=pi_0, sample_shape=batch_size) # transition matrix pi_T = Dirichlet(tf.ones([n_states, n_states])) transition_distribution = Categorical(probs=pi_T) pi_E = np.eye(n_states, dtype=np.float32) # identity matrix emission_distribution = Categorical(probs=pi_E) model = HiddenMarkovModel(initial_distribution=x_0, transition_distribution=transition_distribution, observation_distribution=emission_distribution, num_steps=chain_len, sample_shape=batch_size) return model, pi_0, pi_T
def mmsb(N, K, data): # sparsity rho = 0.3 # MODEL # probability of belonging to each of K blocks for each node gamma = Dirichlet(concentration=tf.ones([K])) # block connectivity Pi = Beta(concentration0=tf.ones([K, K]), concentration1=tf.ones([K, K])) # probability of belonging to each of K blocks for all nodes Z = Multinomial(total_count=1.0, probs=gamma, sample_shape=N) # adjacency X = Bernoulli(probs=(1 - rho) * tf.matmul(Z, tf.matmul(Pi, tf.transpose(Z)))) # INFERENCE (EM algorithm) qgamma = PointMass( params=tf.nn.softmax(tf.Variable(tf.random_normal([K])))) qPi = PointMass( params=tf.nn.sigmoid(tf.Variable(tf.random_normal([K, K])))) qZ = PointMass(params=tf.nn.softmax(tf.Variable(tf.random_normal([N, K])))) #qgamma = Normal(loc=tf.get_variable("qgamma/loc", [K]), # scale=tf.nn.softplus( # tf.get_variable("qgamma/scale", [K]))) #qPi = Normal(loc=tf.get_variable("qPi/loc", [K, K]), # scale=tf.nn.softplus( # tf.get_variable("qPi/scale", [K, K]))) #qZ = Normal(loc=tf.get_variable("qZ/loc", [N, K]), # scale=tf.nn.softplus( # tf.get_variable("qZ/scale", [N, K]))) #inference = ed.KLqp({gamma: qgamma, Pi: qPi, Z: qZ}, data={X: data}) inference = ed.MAP({gamma: qgamma, Pi: qPi, Z: qZ}, data={X: data}) #inference.run() n_iter = 6000 inference.initialize(optimizer=tf.train.AdamOptimizer(learning_rate=0.01), n_iter=n_iter) tf.global_variables_initializer().run() for _ in range(inference.n_iter): info_dict = inference.update() inference.print_progress(info_dict) inference.finalize() print('qgamma after: ', qgamma.mean().eval()) return qZ.mean().eval(), qPi.eval()
def model_stationary_dirichlet_multinomial(n_states, chain_len, total_counts_per_month): """ Models a stationary Dirichlet-Multinomial Markov Chain in Edward """ tf.reset_default_graph() # create default starting state probability vector pi_list = [Dirichlet(tf.ones(n_states)) for _ in range(chain_len)] # now instead of sample_shape we use total_count which # is how many times we sample from each categorical # i.e. number of accounts counts = [ Multinomial(probs=pi, total_count=float(total_counts_per_month)) for pi in pi_list ] return pi_list, counts
def main(_): ed.set_seed(42) # Prior on scalar hyperparameter to Dirichlet. alpha = Gamma(1.0, 1.0) # Prior on size of Dirichlet. n = 1 + tf.cast(Exponential(0.5), tf.int32) # Build a vector of ones whose size is n; multiply it by alpha. p = Dirichlet(tf.ones([n]) * alpha) sess = ed.get_session() print(sess.run(p)) # [ 0.01012419 0.02939712 0.05036638 0.51287931 0.31020424 0.0485355 # 0.0384932 ] print(sess.run(p))
def __init__(self, K, D, N, nu, use_param=False): self.K = K # number of topics self.D = D # number of documents self.N = N # number of words of each document self.nu = nu self.alpha = alpha = tf.zeros([K]) + 0.1 mu0 = tf.constant([0.0] * nu) sigma0 = tf.eye(nu) self.sigma = sigma = WishartCholesky( df=nu, scale=sigma0, cholesky_input_output_matrices=True, sample_shape=K) # sigma_inv = tf.matrix_inverse(sigma) self.mu = mu = Normal(mu0, tf.ones(nu), sample_shape=K) self.theta = theta = [None] * D self.z = z = [None] * D self.w = w = [None] * D for d in range(D): theta[d] = Dirichlet(alpha) if use_param: w[d] = ParamMixture(mixing_weights=theta[d], component_params={ 'loc': mu, 'scale_tril': sigma }, component_dist=MultivariateNormalTriL, sample_shape=N[d]) z[d] = w[d].cat else: z[d] = Categorical(probs=theta[d], sample_shape=N[d]) components = [ MultivariateNormalTriL(loc=tf.gather(mu, k), scale_tril=tf.gather(sigma, k), sample_shape=N[d]) for k in range(K) ] w[d] = Mixture(cat=z[d], components=components, sample_shape=N[d])
def main(_): ed.set_seed(42) # DATA X_data, Z_true = karate("~/data") N = X_data.shape[0] # number of vertices K = 2 # number of clusters # MODEL gamma = Dirichlet(concentration=tf.ones([K])) Pi = Beta(concentration0=tf.ones([K, K]), concentration1=tf.ones([K, K])) Z = Multinomial(total_count=1.0, probs=gamma, sample_shape=N) X = Bernoulli(probs=tf.matmul(Z, tf.matmul(Pi, tf.transpose(Z)))) # INFERENCE (EM algorithm) qgamma = PointMass(tf.nn.softmax(tf.get_variable("qgamma/params", [K]))) qPi = PointMass(tf.nn.sigmoid(tf.get_variable("qPi/params", [K, K]))) qZ = PointMass(tf.nn.softmax(tf.get_variable("qZ/params", [N, K]))) inference = ed.MAP({gamma: qgamma, Pi: qPi, Z: qZ}, data={X: X_data}) inference.initialize(n_iter=250) tf.global_variables_initializer().run() for _ in range(inference.n_iter): info_dict = inference.update() inference.print_progress(info_dict) # CRITICISM Z_pred = qZ.mean().eval().argmax(axis=1) print("Result (label flip can happen):") print("Predicted") print(Z_pred) print("True") print(Z_true) print("Adjusted Rand Index =", adjusted_rand_score(Z_pred, Z_true))
plt.scatter(x_train[:, 0], x_train[:, 1]) plt.axis([-3, 3, -3, 3]) plt.title("Simulated dataset") plt.show() K = 2 D = 2 model = MixtureGaussian(K, D) qpi_alpha = tf.nn.softplus(tf.Variable(tf.random_normal([K]))) qmu_mu = tf.Variable(tf.random_normal([K * D])) qmu_sigma = tf.nn.softplus(tf.Variable(tf.random_normal([K * D]))) qsigma_alpha = tf.nn.softplus(tf.Variable(tf.random_normal([K * D]))) qsigma_beta = tf.nn.softplus(tf.Variable(tf.random_normal([K * D]))) qpi = Dirichlet(alpha=qpi_alpha) qmu = Normal(mu=qmu_mu, sigma=qmu_sigma) qsigma = InverseGamma(alpha=qsigma_alpha, beta=qsigma_beta) data = {'x': x_train} inference = ed.KLqp({'pi': qpi, 'mu': qmu, 'sigma': qsigma}, data, model) inference.run(n_iter=2500, n_samples=10, n_minibatch=20) # Average per-cluster and per-data point likelihood over many posterior samples. log_liks = [] for s in range(100): zrep = {'pi': qpi.sample(()), 'mu': qmu.sample(()), 'sigma': qsigma.sample(())} log_liks += [model.predict(data, zrep)]
log_prior = dirichlet.logpdf(pi, self.alpha) log_prior += tf.reduce_sum(norm.logpdf(mus, 0, np.sqrt(self.c)), 1) log_prior += tf.reduce_sum(invgamma.logpdf(sigmas, self.a, self.b), 1) # Loop over each mini-batch zs[b,:] log_lik = [] n_minibatch = get_dims(zs[0])[0] for s in range(n_minibatch): log_lik_z = N*tf.reduce_sum(tf.log(pi), 1) for k in range(self.K): log_lik_z += tf.reduce_sum(multivariate_normal.logpdf(xs, mus[s, (k*self.D):((k+1)*self.D)], sigmas[s, (k*self.D):((k+1)*self.D)])) log_lik += [log_lik_z] return log_prior + tf.pack(log_lik) ed.set_seed(42) x = np.loadtxt('data/mixture_data.txt', dtype='float32', delimiter=',') data = ed.Data(tf.constant(x, dtype=tf.float32)) model = MixtureGaussian(K=2, D=2) variational = Variational() variational.add(Dirichlet(model.K)) variational.add(Normal(model.K*model.D)) variational.add(InvGamma(model.K*model.D)) inference = ed.MFVI(model, variational, data) inference.run(n_iter=500, n_minibatch=5, n_data=5)
true_mu = np.array([-1.0, 0.0, 1.0], np.float32) * 10 true_sigmasq = np.array([1.0**2, 2.0**2, 3.0**2], np.float32) true_pi = np.array([0.2, 0.3, 0.5], np.float32) N = 10000 K = len(true_mu) true_z = np.random.choice(np.arange(K), size=N, p=true_pi) x_data = true_mu[true_z] + np.random.randn(N) * np.sqrt(true_sigmasq[true_z]) # Prior hyperparameters pi_alpha = np.ones(K, dtype=np.float32) mu_sigma = np.std(true_mu) sigmasq_alpha = 1.0 sigmasq_beta = 2.0 # Model pi = Dirichlet(pi_alpha) mu = Normal(0.0, mu_sigma, sample_shape=K) sigmasq = InverseGamma(sigmasq_alpha, sigmasq_beta, sample_shape=K) x = ParamMixture(pi, { 'mu': mu, 'sigma': tf.sqrt(sigmasq) }, Normal, sample_shape=N) z = x.cat # Conditionals mu_cond = ed.complete_conditional(mu) sigmasq_cond = ed.complete_conditional(sigmasq) pi_cond = ed.complete_conditional(pi) z_cond = ed.complete_conditional(z)
x = np.zeros((N, 2), dtype=np.float32) for n in range(N): k = np.argmax(np.random.multinomial(1, pi)) x[n, :] = np.random.multivariate_normal(mus[k], np.diag(stds[k])) return x N = 500 # number of data points K = 2 # number of components D = 2 # dimensionality of data ed.set_seed(42) x_train = build_toy_dataset(N) pi = Dirichlet(tf.ones(K)) mu = Normal(tf.zeros(D), tf.ones(D), sample_shape=K) sigmasq = InverseGamma(tf.ones(D), tf.ones(D), sample_shape=K) x = ParamMixture(pi, { 'loc': mu, 'scale_diag': tf.sqrt(sigmasq) }, MultivariateNormalDiag, sample_shape=N) z = x.cat T = 500 # number of MCMC samples qpi = Empirical( tf.get_variable("qpi/params", [T, K], initializer=tf.constant_initializer(1.0 / K))) qmu = Empirical( tf.get_variable("qmu/params", [T, K, D],
def _test(alpha, n): x = Dirichlet(alpha=alpha) val_est = get_dims(x.sample(n)) val_true = n + get_dims(alpha) assert val_est == val_true
X[src, dst] = 1 return X, Z ed.set_seed(42) # DATA label_filepath = 'data/karate_labels.txt' graph_filepath = 'data/karate_edgelist.txt' X_data, Z_true = build_dataset(label_filepath, graph_filepath) N = X_data.shape[0] # number of vertices K = 2 # number of clusters # MODEL gamma = Dirichlet(concentration=tf.ones([K])) Pi = Beta(concentration0=tf.ones([K, K]), concentration1=tf.ones([K, K])) Z = Multinomial(total_count=1., probs=gamma, sample_shape=N) X = Bernoulli(probs=tf.matmul(Z, tf.matmul(Pi, tf.transpose(Z)))) # INFERENCE (EM algorithm) qgamma = PointMass(params=tf.nn.softmax(tf.Variable(tf.random_normal([K])))) qPi = PointMass(params=tf.nn.sigmoid(tf.Variable(tf.random_normal([K, K])))) qZ = PointMass(params=tf.nn.softmax(tf.Variable(tf.random_normal([N, K])))) inference = ed.MAP({gamma: qgamma, Pi: qPi, Z: qZ}, data={X: X_data}) n_iter = 100 inference.initialize(n_iter=n_iter) tf.global_variables_initializer().run()
def _test(shape, alpha, size): x = Dirichlet(shape, alpha) val_est = tuple(get_dims(x.sample(size=size))) val_true = (size, ) + shape assert val_est == val_true
k = np.argmax(np.random.multinomial(1, pi)) x[n, :] = np.random.multivariate_normal(mus[k], np.diag(stds[k])) return x N = 500 # num data points K = 2 # num components D = 2 # dimensionality of data ed.set_seed(42) # DATA x_data = build_toy_dataset(N) # MODEL pi = Dirichlet(alpha=tf.constant([1.0] * K)) mu = Normal(mu=tf.zeros([K, D]), sigma=tf.ones([K, D])) sigma = InverseGamma(alpha=tf.ones([K, D]), beta=tf.ones([K, D])) c = Categorical(logits=ed.tile(ed.logit(pi), [N, 1])) x = Normal(mu=tf.gather(mu, c), sigma=tf.gather(sigma, c)) # INFERENCE T = 5000 qpi = Empirical(params=tf.Variable(tf.ones([T, K]) / K)) qmu = Empirical(params=tf.Variable(tf.zeros([T, K, D]))) qsigma = Empirical(params=tf.Variable(tf.ones([T, K, D]))) qc = Empirical(params=tf.Variable(tf.zeros([T, N], dtype=tf.int32))) gpi = Dirichlet(alpha=tf.constant([1.4, 1.6])) gmu = Normal(mu=tf.constant([[1.0, 1.0], [-1.0, -1.0]]), sigma=tf.constant([[0.5, 0.5], [0.5, 0.5]]))
x = np.zeros((N, 2)) for n in range(N): k = np.argmax(np.random.multinomial(1, pi)) x[n, :] = np.random.multivariate_normal(mus[k], np.diag(stds[k])) return x N = 1000 # Number of data points K = 2 # Number of components D = 2 # Dimensionality of data # DATA x_data = build_toy_dataset(N) # MODEL pi = Dirichlet(concentration=tf.constant([1.0] * K)) mu = Normal(loc=tf.zeros([K, D]), scale=tf.ones([K, D])) sigma = InverseGamma(concentration=tf.ones([K, D]), rate=tf.ones([K, D])) c = Categorical(logits=tf.tile(tf.reshape(ed.logit(pi), [1, K]), [N, 1])) x = Normal(loc=tf.gather(mu, c), scale=tf.gather(sigma, c)) # INFERENCE qpi = Dirichlet( concentration=tf.nn.softplus(tf.Variable(tf.random_normal([K])))) qmu = Normal(loc=tf.Variable(tf.random_normal([K, D])), scale=tf.nn.softplus(tf.Variable(tf.random_normal([K, D])))) qsigma = InverseGamma(concentration=tf.nn.softplus( tf.Variable(tf.random_normal([K, D]))), rate=tf.nn.softplus(tf.Variable(tf.random_normal([K, D])))) qc = Categorical(logits=tf.Variable(tf.zeros([N, K])))
img_no = 61060 TRAIN_DIR = "../data/BSR/BSDS500/data/images/train/" img, train_img = load_image_matrix(img_no, TRAIN_DIR) # Hyperparameters N = train_img.shape[0] K = 15 D = train_img.shape[1] T = 800 # number of MCMC samples M = 300 # number of posterior samples sampled ed.set_seed(67) with tf.name_scope("model"): pi = Dirichlet(concentration=tf.constant([1.0] * K, name="pi/weights"), name="pi") mu = Normal(loc=tf.zeros(D, name="centroids/loc"), scale=tf.ones(D, name="centroids/scale"), sample_shape=K, name="centroids") sigma = InverseGamma(concentration=tf.ones( D, name="variability/concentration"), rate=tf.ones(D, name="variability/rate"), sample_shape=K, name="variability") x = ParamMixture(pi, { 'loc': mu, 'scale_diag': tf.sqrt(sigma) }, MultivariateNormalDiag,
plt.scatter(x_train[:, 0], x_train[:, 1]) plt.axis([-3, 3, -3, 3]) plt.title("Simulated dataset") plt.show() K = 2 D = 2 model = MixtureGaussian(K, D) qpi_alpha = tf.nn.softplus(tf.Variable(tf.random_normal([K]))) qmu_mu = tf.Variable(tf.random_normal([K * D])) qmu_sigma = tf.nn.softplus(tf.Variable(tf.random_normal([K * D]))) qsigma_alpha = tf.nn.softplus(tf.Variable(tf.random_normal([K * D]))) qsigma_beta = tf.nn.softplus(tf.Variable(tf.random_normal([K * D]))) qpi = Dirichlet(alpha=qpi_alpha) qmu = Normal(mu=qmu_mu, sigma=qmu_sigma) qsigma = InverseGamma(alpha=qsigma_alpha, beta=qsigma_beta) data = {'x': x_train} inference = ed.KLqp({'pi': qpi, 'mu': qmu, 'sigma': qsigma}, data, model) inference.run(n_iter=2500, n_samples=10, n_minibatch=20) # Average per-cluster and per-data point likelihood over many posterior samples. log_liks = [] for s in range(100): zrep = { 'pi': qpi.sample(()), 'mu': qmu.sample(()), 'sigma': qsigma.sample(()) }
We build a random variable whose size depends on a sample from another random variable. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import edward as ed import tensorflow as tf from edward.models import Exponential, Dirichlet, Gamma ed.set_seed(42) # Prior on scalar hyperparameter to Dirichlet. alpha = Gamma(alpha=1.0, beta=1.0) # Prior on size of Dirichlet. n = 1 + tf.cast(Exponential(lam=0.5), tf.int32) # Build a vector of ones whose size is n; multiply it by alpha. p = Dirichlet(alpha=tf.ones([n]) * alpha) sess = ed.get_session() print(sess.run(p.value())) # [ 0.01012419 0.02939712 0.05036638 0.51287931 0.31020424 0.0485355 # 0.0384932 ] print(sess.run(p.value())) # [ 0.12836078 0.23335715 0.63828212]
from edward.models import Normal, Exponential import tensorflow as tf # 都是RandomVariable衍生出来 # 一元分布 Normal(loc=tf.constant(0.0), scale=tf.constant(1.0)) Normal(loc=tf.zeros(5), scale=tf.ones(5)) Exponential(rate=tf.ones([2, 3])) # 多元分布 from edward.models import Dirichlet, MultivariateNormalTriL K = 3 Dirichlet(concentration=tf.constant([0.1] * K)) # K为Dirichlet分布 MultivariateNormalTriL(loc=tf.zeros([5, K]), scale_tril=tf.ones([5, K, K])) # loc的最后一位表示维数 MultivariateNormalTriL(loc=tf.zeros([2, 5, K]), scale_tril=tf.ones([2, 5, K, K])) # 每个RandomVariable有方法log_prob(),mean(),sample(),且与计算图上的一个张量对应 # 可以支持诸多运算 from edward.models import Normal x = Normal(loc=tf.zeros(10), scale=tf.ones(10)) y = tf.constant(5.0) x + y, x - y, x * y, x / y tf.tanh(x * y) tf.gather(x, 2) print(x[2]) # 有向图模型 from edward.models import Bernoulli, Beta
true_mu = np.array([-3.0, 0.0, 3.0], np.float32) true_sigma = np.array([1.0, 1.0, 1.0], np.float32) true_pi = np.array([.2, .3, .5], np.float32) K = len(true_pi) true_z = np.random.choice(np.arange(K), p=true_pi, size=N) x = true_mu[true_z] + np.random.randn(N) * true_sigma[true_z] # plt.hist(x, bins=200) # plt.show() # we like to calculate posterior p(\theta|x) where \theta=[mu_1,..., mu_3, sigma_1,...,sigma_3, z_1,...,z_3] # Model pi = Dirichlet(np.ones(K, np.float32)) mu = Normal(0.0, 9.0, sample_shape=[K]) sigma = InverseGamma(1.0, 1.0, sample_shape=[K]) c = Categorical(logits=tf.log(pi) - tf.log(1.0 - pi), sample_shape=N) ed_x = Normal(loc=tf.gather(mu, c), scale=tf.gather(sigma, c)) # parameters q_pi = Dirichlet( tf.nn.softplus( tf.get_variable("qpi", [K], initializer=tf.constant_initializer(1.0 / K)))) q_mu = Normal(loc=tf.get_variable("qmu", [K]), scale=1.0) q_sigma = Normal(loc=tf.nn.softplus(tf.get_variable("qsigma", [K])), scale=1.0) inference = ed.KLqp(latent_vars={
from __future__ import absolute_import from __future__ import division from __future__ import print_function import edward as ed import numpy as np import tensorflow as tf from edward.models import Categorical, Dirichlet N = 1000 K = 4 # DATA pi_true = np.random.dirichlet(np.array([20.0, 30.0, 10.0, 10.0])) z_data = np.array([np.random.choice(K, 1, p=pi_true)[0] for n in range(N)]) print('pi={}'.format(pi_true)) # MODEL pi = Dirichlet(alpha=tf.ones(4)) z = Categorical(p=tf.ones([N, 1]) * pi) # INFERENCE qpi = Dirichlet(alpha=tf.nn.softplus(tf.Variable(tf.random_normal([K])))) inference = ed.KLqp({pi: qpi}, data={z: z_data}) inference.run(n_iter=1500, n_samples=30) sess = ed.get_session() print('Inferred pi={}'.format(sess.run(qpi.mean())))
def _test(shape, alpha, n): x = Dirichlet(shape, alpha) val_est = tuple(get_dims(x.sample(n))) val_true = (n, ) + shape assert val_est == val_true