コード例 #1
0
def test_ttest_rel():
    "Test testnd.ttest_rel()"
    ds = datasets.get_uts(True)

    # basic
    res = testnd.ttest_rel('uts', 'A%B', ('a1', 'b1'), ('a0', 'b0'), 'rm',
                           ds=ds, samples=100)
    repr(res)

    # persistence
    string = pickle.dumps(res, pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    repr(res_)
    assert_equal(repr(res_), repr(res))
    assert_dataobj_equal(res.p_uncorrected, res_.p_uncorrected)

    # collapsing cells
    res2 = testnd.ttest_rel('uts', 'A', 'a1', 'a0', 'rm', ds=ds)
    assert_less(res2.p_uncorrected.min(), 0.05)
    assert_equal(res2.n, res.n)

    # reproducibility
    res3 = testnd.ttest_rel('uts', 'A%B', ('a1', 'b1'), ('a0', 'b0'), 'rm',
                            ds=ds, samples=100)
    assert_dataset_equal(res3.find_clusters(maps=True), res.clusters)
    eelbrain._stats.testnd.MULTIPROCESSING = 0
    res4 = testnd.ttest_rel('uts', 'A%B', ('a1', 'b1'), ('a0', 'b0'), 'rm',
                            ds=ds, samples=100)
    assert_dataset_equal(res4.find_clusters(maps=True), res.clusters)
    eelbrain._stats.testnd.MULTIPROCESSING = 1
    sds = ds.sub("B=='b0'")
    # thresholded, UTS
    eelbrain._stats.testnd.MULTIPROCESSING = 0
    res0 = testnd.ttest_rel('uts', 'A', 'a1', 'a0', 'rm', ds=sds, pmin=0.1,
                            samples=100)
    tgt = res0.find_clusters()
    eelbrain._stats.testnd.MULTIPROCESSING = 1
    res1 = testnd.ttest_rel('uts', 'A', 'a1', 'a0', 'rm', ds=sds, pmin=0.1,
                            samples=100)
    assert_dataset_equal(res1.find_clusters(), tgt)
    # thresholded, UTSND
    eelbrain._stats.testnd.MULTIPROCESSING = 0
    res0 = testnd.ttest_rel('utsnd', 'A', 'a1', 'a0', 'rm', ds=sds, pmin=0.1,
                            samples=100)
    tgt = res0.find_clusters()
    eelbrain._stats.testnd.MULTIPROCESSING = 1
    res1 = testnd.ttest_rel('utsnd', 'A', 'a1', 'a0', 'rm', ds=sds, pmin=0.1,
                            samples=100)
    assert_dataset_equal(res1.find_clusters(), tgt)
    # TFCE, UTS
    eelbrain._stats.testnd.MULTIPROCESSING = 0
    res0 = testnd.ttest_rel('uts', 'A', 'a1', 'a0', 'rm', ds=sds, tfce=True,
                            samples=10)
    tgt = res0.compute_probability_map()
    eelbrain._stats.testnd.MULTIPROCESSING = 1
    res1 = testnd.ttest_rel('uts', 'A', 'a1', 'a0', 'rm', ds=sds, tfce=True,
                            samples=10)
    assert_dataobj_equal(res1.compute_probability_map(), tgt)
コード例 #2
0
def test_ttest_rel():
    "Test testnd.ttest_rel()"
    ds = datasets.get_uts(True)

    # basic
    res = testnd.ttest_rel('uts',
                           'A%B', ('a1', 'b1'), ('a0', 'b0'),
                           'rm',
                           ds=ds,
                           samples=100)
    repr(res)

    # persistence
    string = pickle.dumps(res, pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    repr(res_)
    assert_equal(repr(res_), repr(res))
    assert_dataobj_equal(res.p_uncorrected, res_.p_uncorrected)

    # collapsing cells
    res2 = testnd.ttest_rel('uts', 'A', 'a1', 'a0', 'rm', ds=ds)
    assert_less(res2.p_uncorrected.min(), 0.05)
    assert_equal(res2.n, res.n)

    # reproducibility
    res3 = testnd.ttest_rel('uts',
                            'A%B', ('a1', 'b1'), ('a0', 'b0'),
                            'rm',
                            ds=ds,
                            samples=100)
    assert_dataset_equal(res3.find_clusters(maps=True), res.clusters)
    eelbrain._stats.testnd.MULTIPROCESSING = 0
    res4 = testnd.ttest_rel('uts',
                            'A%B', ('a1', 'b1'), ('a0', 'b0'),
                            'rm',
                            ds=ds,
                            samples=100)
    assert_dataset_equal(res4.find_clusters(maps=True), res.clusters)
    eelbrain._stats.testnd.MULTIPROCESSING = 1
    sds = ds.sub("B=='b0'")
    # thresholded, UTS
    eelbrain._stats.testnd.MULTIPROCESSING = 0
    res0 = testnd.ttest_rel('uts',
                            'A',
                            'a1',
                            'a0',
                            'rm',
                            ds=sds,
                            pmin=0.1,
                            samples=100)
    tgt = res0.find_clusters()
    eelbrain._stats.testnd.MULTIPROCESSING = 1
    res1 = testnd.ttest_rel('uts',
                            'A',
                            'a1',
                            'a0',
                            'rm',
                            ds=sds,
                            pmin=0.1,
                            samples=100)
    assert_dataset_equal(res1.find_clusters(), tgt)
    # thresholded, UTSND
    eelbrain._stats.testnd.MULTIPROCESSING = 0
    res0 = testnd.ttest_rel('utsnd',
                            'A',
                            'a1',
                            'a0',
                            'rm',
                            ds=sds,
                            pmin=0.1,
                            samples=100)
    tgt = res0.find_clusters()
    eelbrain._stats.testnd.MULTIPROCESSING = 1
    res1 = testnd.ttest_rel('utsnd',
                            'A',
                            'a1',
                            'a0',
                            'rm',
                            ds=sds,
                            pmin=0.1,
                            samples=100)
    assert_dataset_equal(res1.find_clusters(), tgt)
    # TFCE, UTS
    eelbrain._stats.testnd.MULTIPROCESSING = 0
    res0 = testnd.ttest_rel('uts',
                            'A',
                            'a1',
                            'a0',
                            'rm',
                            ds=sds,
                            tfce=True,
                            samples=10)
    tgt = res0.compute_probability_map()
    eelbrain._stats.testnd.MULTIPROCESSING = 1
    res1 = testnd.ttest_rel('uts',
                            'A',
                            'a1',
                            'a0',
                            'rm',
                            ds=sds,
                            tfce=True,
                            samples=10)
    assert_dataobj_equal(res1.compute_probability_map(), tgt)
コード例 #3
0
def test_anova():
    "Test testnd.anova()"
    ds = datasets.get_uts(True)

    testnd.anova('utsnd', 'A*B', ds=ds)
    for samples in (0, 2):
        logger.info("TEST:  samples=%r" % samples)
        testnd.anova('utsnd', 'A*B', ds=ds, samples=samples)
        testnd.anova('utsnd', 'A*B', ds=ds, samples=samples, pmin=0.05)
        testnd.anova('utsnd', 'A*B', ds=ds, samples=samples, tfce=True)

    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, samples=0, pmin=0.05)
    repr(res)
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, samples=2, pmin=0.05)
    repr(res)

    # persistence
    string = pickle.dumps(res, protocol=pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    assert_equal(repr(res_), repr(res))

    # threshold-free
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, samples=10)
    repr(res)
    assert_in('A clusters', res.clusters.info)
    assert_in('B clusters', res.clusters.info)
    assert_in('A x B clusters', res.clusters.info)

    # no clusters
    res = testnd.anova('uts', 'B', sub="A=='a1'", ds=ds, samples=5, pmin=0.05,
                       mintime=0.02)
    repr(res)
    assert_in('v', res.clusters)
    assert_in('p', res.clusters)

    # all effects with clusters
    res = testnd.anova('uts', 'A*B*rm', ds=ds, samples=5, pmin=0.05,
                       tstart=0.1, mintime=0.02)
    assert_equal(set(res.clusters['effect'].cells), set(res.effects))

    # some effects with clusters, some without
    res = testnd.anova('uts', 'A*B*rm', ds=ds, samples=5, pmin=0.05,
                       tstart=0.37, mintime=0.02)
    string = pickle.dumps(res, pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    assert_dataobj_equal(res.clusters, res_.clusters)

    # test multi-effect results (with persistence)
    # UTS
    res = testnd.anova('uts', 'A*B*rm', ds=ds, samples=5)
    repr(res)
    string = pickle.dumps(res, pickle.HIGHEST_PROTOCOL)
    resr = pickle.loads(string)
    tf_clusters = resr.find_clusters(pmin=0.05)
    peaks = resr.find_peaks()
    assert_dataobj_equal(tf_clusters, res.find_clusters(pmin=0.05))
    assert_dataobj_equal(peaks, res.find_peaks())
    assert_equal(tf_clusters.eval("p.min()"), peaks.eval("p.min()"))
    unmasked = resr.f[0]
    masked = resr.masked_parameter_map(effect=0, pmin=0.05)
    assert_array_equal(masked.x <= unmasked.x, True)

    # reproducibility
    res0 = testnd.anova('utsnd', 'A*B*rm', ds=ds, pmin=0.05, samples=5)
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, pmin=0.05, samples=5)
    assert_dataset_equal(res.clusters, res0.clusters)
    eelbrain._stats.testnd.MULTIPROCESSING = 0
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, pmin=0.05, samples=5)
    assert_dataset_equal(res.clusters, res0.clusters)
    eelbrain._stats.testnd.MULTIPROCESSING = 1

    # permutation
    eelbrain._stats.permutation._YIELD_ORIGINAL = 1
    samples = 4
    # raw
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, samples=samples)
    for dist in res._cdist:
        eq_(len(dist.dist), samples)
        assert_array_equal(dist.dist, dist.parameter_map.abs().max())
    # TFCE
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, tfce=True, samples=samples)
    for dist in res._cdist:
        eq_(len(dist.dist), samples)
        assert_array_equal(dist.dist, dist.tfce_map.abs().max())
    # thresholded
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, pmin=0.05, samples=samples)
    clusters = res.find_clusters()
    for dist, effect in izip(res._cdist, res.effects):
        effect_idx = clusters.eval("effect == %r" % effect)
        vmax = clusters[effect_idx, 'v'].abs().max()
        eq_(len(dist.dist), samples)
        assert_array_equal(dist.dist, vmax)
    eelbrain._stats.permutation._YIELD_ORIGINAL = 0
コード例 #4
0
def test_anova():
    "Test testnd.anova()"
    ds = datasets.get_uts(True)

    testnd.anova('utsnd', 'A*B', ds=ds)
    for samples in (0, 2):
        logger.info("TEST:  samples=%r" % samples)
        testnd.anova('utsnd', 'A*B', ds=ds, samples=samples)
        testnd.anova('utsnd', 'A*B', ds=ds, samples=samples, pmin=0.05)
        testnd.anova('utsnd', 'A*B', ds=ds, samples=samples, tfce=True)

    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, samples=0, pmin=0.05)
    repr(res)
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, samples=2, pmin=0.05)
    repr(res)

    # persistence
    string = pickle.dumps(res, protocol=pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    assert_equal(repr(res_), repr(res))

    # threshold-free
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, samples=10)
    repr(res)
    assert_in('A clusters', res.clusters.info)
    assert_in('B clusters', res.clusters.info)
    assert_in('A x B clusters', res.clusters.info)

    # no clusters
    res = testnd.anova('uts',
                       'B',
                       sub="A=='a1'",
                       ds=ds,
                       samples=5,
                       pmin=0.05,
                       mintime=0.02)
    repr(res)
    assert_in('v', res.clusters)
    assert_in('p', res.clusters)

    # all effects with clusters
    res = testnd.anova('uts',
                       'A*B*rm',
                       ds=ds,
                       samples=5,
                       pmin=0.05,
                       tstart=0.1,
                       mintime=0.02)
    assert_equal(set(res.clusters['effect'].cells), set(res.effects))

    # some effects with clusters, some without
    res = testnd.anova('uts',
                       'A*B*rm',
                       ds=ds,
                       samples=5,
                       pmin=0.05,
                       tstart=0.37,
                       mintime=0.02)
    string = pickle.dumps(res, pickle.HIGHEST_PROTOCOL)
    res_ = pickle.loads(string)
    assert_dataobj_equal(res.clusters, res_.clusters)

    # test multi-effect results (with persistence)
    # UTS
    res = testnd.anova('uts', 'A*B*rm', ds=ds, samples=5)
    repr(res)
    string = pickle.dumps(res, pickle.HIGHEST_PROTOCOL)
    resr = pickle.loads(string)
    tf_clusters = resr.find_clusters(pmin=0.05)
    peaks = resr.find_peaks()
    assert_dataobj_equal(tf_clusters, res.find_clusters(pmin=0.05))
    assert_dataobj_equal(peaks, res.find_peaks())
    assert_equal(tf_clusters.eval("p.min()"), peaks.eval("p.min()"))
    unmasked = resr.f[0]
    masked = resr.masked_parameter_map(effect=0, pmin=0.05)
    assert_array_equal(masked.x <= unmasked.x, True)

    # reproducibility
    res0 = testnd.anova('utsnd', 'A*B*rm', ds=ds, pmin=0.05, samples=5)
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, pmin=0.05, samples=5)
    assert_dataset_equal(res.clusters, res0.clusters)
    eelbrain._stats.testnd.MULTIPROCESSING = 0
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, pmin=0.05, samples=5)
    assert_dataset_equal(res.clusters, res0.clusters)
    eelbrain._stats.testnd.MULTIPROCESSING = 1

    # permutation
    eelbrain._stats.permutation._YIELD_ORIGINAL = 1
    samples = 4
    # raw
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, samples=samples)
    for dist in res._cdist:
        eq_(len(dist.dist), samples)
        assert_array_equal(dist.dist, dist.parameter_map.abs().max())
    # TFCE
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, tfce=True, samples=samples)
    for dist in res._cdist:
        eq_(len(dist.dist), samples)
        assert_array_equal(dist.dist, dist.tfce_map.abs().max())
    # thresholded
    res = testnd.anova('utsnd', 'A*B*rm', ds=ds, pmin=0.05, samples=samples)
    clusters = res.find_clusters()
    for dist, effect in izip(res._cdist, res.effects):
        effect_idx = clusters.eval("effect == %r" % effect)
        vmax = clusters[effect_idx, 'v'].abs().max()
        eq_(len(dist.dist), samples)
        assert_array_equal(dist.dist, vmax)
    eelbrain._stats.permutation._YIELD_ORIGINAL = 0