def test_compute_gt(self): level = 3 ds = voc.build_dataset('test/data/VOC2007', im_input_size=(512, 512)) anchors = self.generate_anchors(config.AnchorsConfig(), 512) im, (l, bbs) = next(iter(ds.take(1))) gt_reg, gt_labels = utils.anchors.anchor_targets_bbox( anchors, tf.expand_dims(im, 0), tf.expand_dims(bbs, 0), tf.expand_dims(l, 0), len(voc.IDX_2_LABEL)) nearest_anchors = anchors[gt_reg[0, :, -1] == 1].numpy() im_random = unnormalize_image(im) im_random = visualizer.draw_boxes(im_random, nearest_anchors) im_random = visualizer.draw_boxes(im_random, bbs, colors=[0, 0, 255]) for label in l: print(voc.IDX_2_LABEL[int(label)]) plt.imshow(im_random) plt.show(block=True) print('GT shapes:', gt_labels.shape, gt_reg.shape) print('Found any overlapping anchor?', np.any(gt_labels[:, :, -1] == 1.))
def test_regress_boxes(self): print('Regress anchors test') ds = voc.build_dataset('test/data/VOC2007', im_input_size=(512, 512)) anchors = self.generate_anchors(config.AnchorsConfig(), 512) im, (l, bbs) = next(iter(ds.take(1))) gt_reg, gt_labels = utils.anchors.anchor_targets_bbox( anchors, tf.expand_dims(im, 0), tf.expand_dims(bbs, 0), tf.expand_dims(l, 0), len(voc.IDX_2_LABEL)) near_mask = gt_reg[0, :, -1] == 1 nearest_regressors = tf.expand_dims( tf.boolean_mask(gt_reg[0], near_mask)[:, :-1], 0) nearest_anchors = tf.expand_dims(anchors[near_mask], 0) # apply regression to boxes regressed_boxes = utils.bndbox.regress_bndboxes( nearest_anchors, nearest_regressors) im_random = unnormalize_image(im) im_random = visualizer.draw_boxes(im_random, regressed_boxes[0]) plt.imshow(im_random) plt.show(block=True)
def test_regress_boxes(self): print('Regress anchors test') level = 3 ds = voc.build_dataset('test/data/VOC2007', im_input_size=(512, 512)) anchors = self.generate_anchors(config.AnchorsConfig(), 512) for im, (l, bbs) in ds.take(1): gt_reg, gt_labels = \ utils.anchors.anchor_targets_bbox(anchors.numpy(), im.numpy(), bbs.numpy(), l.numpy(), len(voc.IDX_2_LABEL)) near_mask = gt_reg[0, :, -1] == 1 nearest_regressors = tf.expand_dims(gt_reg[0, near_mask][:, :-1], 0) nearest_anchors = tf.expand_dims(anchors[near_mask], 0) # apply regression to boxes regressed_boxes = utils.bndbox.regress_bndboxes(nearest_anchors, nearest_regressors) im_random = im[0].numpy() for box in regressed_boxes[0].numpy(): box = box.astype('int32') cv2.rectangle(im_random, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 1) cv2.imshow('', im_random) cv2.waitKey()
def test_compute_gt(self): level = 3 ds = voc.build_dataset('test/data/VOC2007', im_input_size=(512, 512)) anchors = self.generate_anchors(config.AnchorsConfig(), 512) for im, (l, bbs) in ds.take(1): gt_reg, gt_labels = utils.anchors.anchor_targets_bbox( anchors, im, bbs, l, len(voc.IDX_2_LABEL)) nearest_anchors = anchors[gt_reg[0, :, -1] == 1].numpy() im_random = im[0].numpy() for box in nearest_anchors: box = box.astype('int32') cv2.rectangle(im_random, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 1) for box in bbs.numpy()[0]: box = box.astype('int32') cv2.rectangle(im_random, (box[0], box[1]), (box[2], box[3]), (0, 0, 255), 3) for label in l[0]: print(voc.IDX_2_LABEL[int(label)]) plt.imshow(im_random) plt.show(block=True) print('GT shapes:', gt_labels.shape, gt_reg.shape) print('Found any overlapping anchor?', np.any(gt_labels[:, :, -1] == 1.))
def test_compute_gt(self): ds = voc.build_dataset('test/data/VOC2007', im_input_size=(512, 512), shuffle=False) ds = ds.skip(1).batch(1) wrapped_ds = utils.training.wrap_detection_dataset(ds, (512, 512), 20) anchors = self.generate_anchors(config.AnchorsConfig(), 512) im, (regressors, l) = next(iter(wrapped_ds.take(1))) im = unnormalize_image(im[0]) near_mask = regressors[0, :, -1] == 1 nearest_regressors = tf.expand_dims( tf.boolean_mask(regressors[0], near_mask)[:, :-1], 0) nearest_anchors = tf.expand_dims(anchors[near_mask], 0) # apply regression to boxes regressed_boxes = utils.bndbox.regress_bndboxes( nearest_anchors, nearest_regressors) im = utils.visualizer.draw_boxes(im, nearest_anchors[0], colors=[(255, 255, 0)]) im = utils.visualizer.draw_boxes(im, regressed_boxes[0], colors=[(0, 255, 255)]) plt.imshow(im) plt.axis('off') plt.show(block=True) print('GT shapes:', l.shape, regressors.shape) print('Found any overlapping anchor?', tf.reduce_any(tf.equal(l[:, :, -1], 1.)))
def test_nms(self): n_classes = len(voc.LABEL_2_IDX) anchors_config = config.AnchorsConfig() ds = voc.build_dataset('test/data/VOC2007', im_input_size=(512, 512)) anchors_gen = [ utils.anchors.AnchorGenerator(size=anchors_config.sizes[i - 3], aspect_ratios=anchors_config.ratios, stride=anchors_config.strides[i - 3]) for i in range(3, 8) ] sizes = (80, 40, 20, 10, 5) im, (l, bbs) = next(iter(ds.take(1))) anchors = [ anchor_gen((size, size, 3)) for anchor_gen, size in zip(anchors_gen, sizes) ] anchors = tf.concat(anchors, axis=0) gt_reg, gt_labels = utils.anchors.anchor_targets_bbox( anchors, tf.expand_dims(im, 0), tf.expand_dims(bbs, 0), tf.expand_dims(l, 0), n_classes) box_score = gt_labels[0] true_idx = tf.reshape(tf.where(box_score[:, -1] == 1), [-1]) box_score = tf.gather(box_score, true_idx) anchors = tf.gather(anchors, true_idx) before_nms_shape = anchors.shape anchors = tf.expand_dims(anchors, 0) box_score = tf.expand_dims(box_score[:, :-1], 0) boxes, labels, scores = bb_utils.nms(anchors, box_score) after_nms_shape = boxes[0].shape if anchors.shape[0] != 0: self.assertTrue(after_nms_shape[0] < before_nms_shape[0], 'After nms boxes should be reduced') else: print('No ground truth anchors') im_random = utils.visualizer.draw_boxes(im, boxes[0]) plt.imshow(im_random) plt.axis('off') plt.show(block=True)
def test_forward_inference(self): batch_size = 2 num_classes = len(voc.IDX_2_LABEL) model = models.EfficientDet(num_classes=num_classes, D=0, weights=None) input_size = model.config.input_size ds = voc.build_dataset('test/data/VOC2007', im_input_size=input_size) images, annotations = next(iter(ds.take(1))) boxes, labels, scores = model(tf.expand_dims(images, 0), training=False) # TODO: migrate to tensors when output is padded for i in range(len(boxes)): self._compare_shapes(boxes[i].shape, [None, 4]) self._compare_shapes(labels[i].shape, [None])