def __init__(self, model_name: Text, ckpt_path: Text = None, batch_size: int = 1, only_network: bool = False, model_params: Dict[Text, Any] = None): """Initialize the inference driver. Args: model_name: target model name, such as efficientdet-d0. ckpt_path: checkpoint path, such as /tmp/efficientdet-d0/. batch_size: batch size for inference. only_network: only use the network without pre/post processing. model_params: model parameters for overriding the config. """ super().__init__() self.model_name = model_name self.ckpt_path = ckpt_path self.batch_size = batch_size self.only_network = only_network self.params = hparams_config.get_detection_config(model_name).as_dict() if model_params: self.params.update(model_params) self.params.update(dict(is_training_bn=False)) self.label_map = self.params.get('label_map', None) self._model = None mixed_precision = self.params.get('mixed_precision', None) precision = utils.get_precision(self.params.get('strategy', None), mixed_precision) policy = tf.keras.mixed_precision.Policy(precision) tf.keras.mixed_precision.set_global_policy(policy)
def _build_model(self, grad_checkpoint=False): tf.random.set_seed(1111) config = hparams_config.get_detection_config('efficientdet-d0') config.heads = ['object_detection', 'segmentation'] config.batch_size = 1 config.num_examples_per_epoch = 1 config.model_dir = tempfile.mkdtemp() config.steps_per_epoch = 1 config.mixed_precision = True config.grad_checkpoint = grad_checkpoint x = tf.ones((1, 512, 512, 3)) labels = { 'box_targets_%d' % i: tf.ones((1, 512 // 2**i, 512 // 2**i, 36)) for i in range(3, 8) } labels.update({ 'cls_targets_%d' % i: tf.ones((1, 512 // 2**i, 512 // 2**i, 9), dtype=tf.int32) for i in range(3, 8) }) labels.update({'image_masks': tf.ones((1, 128, 128, 1))}) labels.update({'mean_num_positives': tf.constant([10.0])}) params = config.as_dict() params['num_shards'] = 1 params['steps_per_execution'] = 100 params['model_dir'] = tempfile.mkdtemp() params['profile'] = False config.override(params, allow_new_keys=True) model = train_lib.EfficientDetNetTrain(config=config) model.build((1, 512, 512, 3)) model.compile( optimizer=train_lib.get_optimizer(params), loss={ train_lib.BoxLoss.__name__: train_lib.BoxLoss(params['delta'], reduction=tf.keras.losses.Reduction.NONE), train_lib.BoxIouLoss.__name__: train_lib.BoxIouLoss(params['iou_loss_type'], params['min_level'], params['max_level'], params['num_scales'], params['aspect_ratios'], params['anchor_scale'], params['image_size'], reduction=tf.keras.losses.Reduction.NONE), train_lib.FocalLoss.__name__: train_lib.FocalLoss(params['alpha'], params['gamma'], label_smoothing=params['label_smoothing'], reduction=tf.keras.losses.Reduction.NONE), tf.keras.losses.SparseCategoricalCrossentropy.__name__: tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) }) return params, x, labels, model
def main(_): # Parse and override hparams config = hparams_config.get_detection_config(FLAGS.model_name) config.override(FLAGS.hparams) # Parse image size in case it is in string format. config.image_size = utils.parse_image_size(config.image_size) try: recordinspect = RecordInspect(config) recordinspect.visualize() except Exception as e: # pylint: disable=broad-except logging.error(e) else: logging.info('Done, please find samples at %s', FLAGS.save_samples_dir)
def test_display_callback(self): config = hparams_config.get_detection_config('efficientdet-d0') config.batch_size = 1 config.num_examples_per_epoch = 1 config.model_dir = tempfile.mkdtemp() fake_image = tf.ones([512, 512, 3], dtype=tf.uint8) fake_jpeg = tf.image.encode_jpeg(fake_image) sample_image = os.path.join(config.model_dir + 'fake_image.jpg') tf.io.write_file(sample_image, fake_jpeg) display_callback = train_lib.DisplayCallback(sample_image, config.model_dir, update_freq=1) model = train_lib.EfficientDetNetTrain(config=config) model.build((1, 512, 512, 3)) display_callback.set_model(model) display_callback.on_train_batch_end(0)
def __init__(self, model_name: Text, logdir: Text, tensorrt: Text = False, use_xla: bool = False, ckpt_path: Text = None, export_ckpt: Text = None, saved_model_dir: Text = None, tflite_path: Text = None, batch_size: int = 1, hparams: Text = '', **kwargs): self.model_name = model_name self.logdir = logdir self.tensorrt = tensorrt self.use_xla = use_xla self.ckpt_path = ckpt_path self.export_ckpt = export_ckpt self.saved_model_dir = saved_model_dir self.tflite_path = tflite_path model_config = hparams_config.get_detection_config(model_name) model_config.override(hparams) # Add custom overrides model_config.is_training_bn = False model_config.image_size = utils.parse_image_size( model_config.image_size) # If batch size is 0, then build a graph with dynamic batch size. self.batch_size = batch_size or None self.labels_shape = [batch_size, model_config.num_classes] # A hack to make flag consistent with nms configs. if kwargs.get('score_thresh', None): model_config.nms_configs.score_thresh = kwargs['score_thresh'] if kwargs.get('nms_method', None): model_config.nms_configs.method = kwargs['nms_method'] if kwargs.get('max_output_size', None): model_config.nms_configs.max_output_size = kwargs[ 'max_output_size'] height, width = model_config.image_size if model_config.data_format == 'channels_first': self.inputs_shape = [batch_size, 3, height, width] else: self.inputs_shape = [batch_size, height, width, 3] self.model_config = model_config
def __init__(self, model_name: Text, ckpt_path: Text, model_params: Dict[Text, Any] = None): """Initialize the inference driver. Args: model_name: target model name, such as efficientdet-d0. ckpt_path: checkpoint path, such as /tmp/efficientdet-d0/. model_params: model parameters for overriding the config. """ self.model_name = model_name self.ckpt_path = ckpt_path self.params = hparams_config.get_detection_config(model_name).as_dict() if model_params: self.params.update(model_params) self.params.update(dict(is_training_bn=False)) self.label_map = self.params.get('label_map', None)
def test_parser(self): tf.random.set_seed(111111) params = hparams_config.get_detection_config( 'efficientdet-d0').as_dict() input_anchors = anchors.Anchors(params['min_level'], params['max_level'], params['num_scales'], params['aspect_ratios'], params['anchor_scale'], params['image_size']) anchor_labeler = anchors.AnchorLabeler(input_anchors, params['num_classes']) example_decoder = tf_example_decoder.TfExampleDecoder( regenerate_source_id=params['regenerate_source_id']) tfrecord_path = test_util.make_fake_tfrecord(self.get_temp_dir()) dataset = tf.data.TFRecordDataset([tfrecord_path]) value = next(iter(dataset)) reader = dataloader.InputReader(tfrecord_path, True) result = reader.dataset_parser(value, example_decoder, anchor_labeler, params) self.assertEqual(len(result), 11)
def __init__(self, model_name: Text, ckpt_path: Text, batch_size: int = 1, use_xla: bool = False, min_score_thresh: float = None, max_boxes_to_draw: float = None, line_thickness: int = None, model_params: Dict[Text, Any] = None): """Initialize the inference driver. Args: model_name: target model name, such as efficientdet-d0. ckpt_path: checkpoint path, such as /tmp/efficientdet-d0/. batch_size: batch size for inference. use_xla: Whether run with xla optimization. min_score_thresh: minimal score threshold for filtering predictions. max_boxes_to_draw: the maximum number of boxes per image. line_thickness: the line thickness for drawing boxes. model_params: model parameters for overriding the config. """ self.model_name = model_name self.ckpt_path = ckpt_path self.batch_size = batch_size self.params = hparams_config.get_detection_config(model_name).as_dict() if model_params: self.params.update(model_params) self.params.update(dict(is_training_bn=False)) self.label_map = self.params.get('label_map', None) self.signitures = None self.sess = None self.use_xla = use_xla self.min_score_thresh = min_score_thresh self.max_boxes_to_draw = max_boxes_to_draw self.line_thickness = line_thickness
def main(_): tf.config.run_functions_eagerly(FLAGS.debug) devices = tf.config.list_physical_devices('GPU') for device in devices: tf.config.experimental.set_memory_growth(device, True) model_config = hparams_config.get_detection_config(FLAGS.model_name) model_config.override(FLAGS.hparams) # Add custom overrides model_config.is_training_bn = False if FLAGS.image_size != -1: model_config.image_size = FLAGS.image_size model_config.image_size = utils.parse_image_size(model_config.image_size) model_params = model_config.as_dict() ckpt_path_or_file = FLAGS.model_dir if tf.io.gfile.isdir(ckpt_path_or_file): ckpt_path_or_file = tf.train.latest_checkpoint(ckpt_path_or_file) driver = inference.ServingDriver(FLAGS.model_name, ckpt_path_or_file, FLAGS.batch_size or None, FLAGS.only_network, model_params) if FLAGS.mode == 'export': if not FLAGS.saved_model_dir: raise ValueError('Please specify --saved_model_dir=') model_dir = FLAGS.saved_model_dir if tf.io.gfile.exists(model_dir): tf.io.gfile.rmtree(model_dir) driver.export(model_dir, FLAGS.tensorrt, FLAGS.tflite, FLAGS.file_pattern, FLAGS.num_calibration_steps) print('Model are exported to %s' % model_dir) elif FLAGS.mode == 'infer': image_file = tf.io.read_file(FLAGS.input_image) image_arrays = tf.io.decode_image(image_file) image_arrays.set_shape((None, None, 3)) image_arrays = tf.expand_dims(image_arrays, axis=0) if FLAGS.saved_model_dir: driver.load(FLAGS.saved_model_dir) if FLAGS.saved_model_dir.endswith('.tflite'): image_arrays = tf.image.resize_with_pad( image_arrays, *model_config.image_size) image_arrays = tf.cast(image_arrays, tf.uint8) detections_bs = driver.serve(image_arrays) boxes, scores, classes, _ = tf.nest.map_structure( np.array, detections_bs) raw_image = Image.fromarray(np.array(image_arrays)[0]) img = driver.visualize( raw_image, boxes[0], classes[0], scores[0], min_score_thresh=model_config.nms_configs.score_thresh or 0.4, max_boxes_to_draw=model_config.nms_configs.max_output_size) output_image_path = os.path.join(FLAGS.output_image_dir, '0.jpg') Image.fromarray(img).save(output_image_path) print('writing file to %s' % output_image_path) elif FLAGS.mode == 'benchmark': if FLAGS.saved_model_dir: driver.load(FLAGS.saved_model_dir) batch_size = FLAGS.batch_size or 1 if FLAGS.input_image: image_file = tf.io.read_file(FLAGS.input_image) image_arrays = tf.image.decode_image(image_file) image_arrays.set_shape((None, None, 3)) image_arrays = tf.expand_dims(image_arrays, 0) if batch_size > 1: image_arrays = tf.tile(image_arrays, [batch_size, 1, 1, 1]) else: # use synthetic data if no image is provided. image_arrays = tf.ones((batch_size, *model_config.image_size, 3), dtype=tf.uint8) if FLAGS.only_network: image_arrays = tf.image.convert_image_dtype( image_arrays, tf.float32) image_arrays = tf.image.resize(image_arrays, model_config.image_size) driver.benchmark(image_arrays, FLAGS.bm_runs, FLAGS.trace_filename) elif FLAGS.mode == 'dry': # transfer to tf2 format ckpt driver.build() if FLAGS.export_ckpt: driver.model.save_weights(FLAGS.export_ckpt) elif FLAGS.mode == 'video': import cv2 # pylint: disable=g-import-not-at-top if FLAGS.saved_model_dir: driver.load(FLAGS.saved_model_dir) cap = cv2.VideoCapture(FLAGS.input_video) if not cap.isOpened(): print('Error opening input video: {}'.format(FLAGS.input_video)) out_ptr = None if FLAGS.output_video: frame_width, frame_height = int(cap.get(3)), int(cap.get(4)) out_ptr = cv2.VideoWriter( FLAGS.output_video, cv2.VideoWriter_fourcc('m', 'p', '4', 'v'), cap.get(5), (frame_width, frame_height)) while cap.isOpened(): # Capture frame-by-frame ret, frame = cap.read() if not ret: break raw_frames = np.array([frame]) detections_bs = driver.serve(raw_frames) boxes, scores, classes, _ = tf.nest.map_structure( np.array, detections_bs) new_frame = driver.visualize( raw_frames[0], boxes[0], classes[0], scores[0], min_score_thresh=model_config.nms_configs.score_thresh or 0.4, max_boxes_to_draw=model_config.nms_configs.max_output_size) if out_ptr: # write frame into output file. out_ptr.write(new_frame) else: # show the frame online, mainly used for real-time speed test. cv2.imshow('Frame', new_frame) # Press Q on keyboard to exit if cv2.waitKey(1) & 0xFF == ord('q'): break
def main(_): if FLAGS.strategy == 'tpu': tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver( FLAGS.tpu, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) tpu_grpc_url = tpu_cluster_resolver.get_master() tf.Session.reset(tpu_grpc_url) else: tpu_cluster_resolver = None # Check data path if FLAGS.mode in ('train', 'train_and_eval'): if FLAGS.train_file_pattern is None: raise RuntimeError('Must specify --train_file_pattern for train.') if FLAGS.mode in ('eval', 'train_and_eval'): if FLAGS.val_file_pattern is None: raise RuntimeError('Must specify --val_file_pattern for eval.') # Parse and override hparams config = hparams_config.get_detection_config(FLAGS.model_name) config.override(FLAGS.hparams) if FLAGS.num_epochs: # NOTE: remove this flag after updating all docs. config.num_epochs = FLAGS.num_epochs # Parse image size in case it is in string format. config.image_size = utils.parse_image_size(config.image_size) # The following is for spatial partitioning. `features` has one tensor while # `labels` had 4 + (`max_level` - `min_level` + 1) * 2 tensors. The input # partition is performed on `features` and all partitionable tensors of # `labels`, see the partition logic below. # In the TPUEstimator context, the meaning of `shard` and `replica` is the # same; follwing the API, here has mixed use of both. if FLAGS.use_spatial_partition: # Checks input_partition_dims agrees with num_cores_per_replica. if FLAGS.num_cores_per_replica != np.prod(FLAGS.input_partition_dims): raise RuntimeError('--num_cores_per_replica must be a product of array' 'elements in --input_partition_dims.') labels_partition_dims = { 'mean_num_positives': None, 'source_ids': None, 'groundtruth_data': None, 'image_scales': None, 'image_masks': None, } # The Input Partition Logic: We partition only the partition-able tensors. feat_sizes = utils.get_feat_sizes( config.get('image_size'), config.get('max_level')) for level in range(config.get('min_level'), config.get('max_level') + 1): def _can_partition(spatial_dim): partitionable_index = np.where( spatial_dim % np.array(FLAGS.input_partition_dims) == 0) return len(partitionable_index[0]) == len(FLAGS.input_partition_dims) spatial_dim = feat_sizes[level] if _can_partition(spatial_dim['height']) and _can_partition( spatial_dim['width']): labels_partition_dims['box_targets_%d' % level] = FLAGS.input_partition_dims labels_partition_dims['cls_targets_%d' % level] = FLAGS.input_partition_dims else: labels_partition_dims['box_targets_%d' % level] = None labels_partition_dims['cls_targets_%d' % level] = None num_cores_per_replica = FLAGS.num_cores_per_replica input_partition_dims = [FLAGS.input_partition_dims, labels_partition_dims] num_shards = FLAGS.num_cores // num_cores_per_replica else: num_cores_per_replica = None input_partition_dims = None num_shards = FLAGS.num_cores params = dict( config.as_dict(), model_name=FLAGS.model_name, iterations_per_loop=FLAGS.iterations_per_loop, model_dir=FLAGS.model_dir, num_shards=num_shards, num_examples_per_epoch=FLAGS.num_examples_per_epoch, strategy=FLAGS.strategy, backbone_ckpt=FLAGS.backbone_ckpt, ckpt=FLAGS.ckpt, val_json_file=FLAGS.val_json_file, testdev_dir=FLAGS.testdev_dir, profile=FLAGS.profile, mode=FLAGS.mode) config_proto = tf.ConfigProto( allow_soft_placement=True, log_device_placement=False) if FLAGS.strategy != 'tpu': if FLAGS.use_xla: config_proto.graph_options.optimizer_options.global_jit_level = ( tf.OptimizerOptions.ON_1) config_proto.gpu_options.allow_growth = True model_dir = FLAGS.model_dir model_fn_instance = det_model_fn.get_model_fn(FLAGS.model_name) max_instances_per_image = config.max_instances_per_image if FLAGS.eval_samples: eval_steps = int((FLAGS.eval_samples + FLAGS.eval_batch_size - 1) // FLAGS.eval_batch_size) else: eval_steps = None total_examples = int(config.num_epochs * FLAGS.num_examples_per_epoch) train_steps = total_examples // FLAGS.train_batch_size logging.info(params) if not tf.io.gfile.exists(model_dir): tf.io.gfile.makedirs(model_dir) config_file = os.path.join(model_dir, 'config.yaml') if not tf.io.gfile.exists(config_file): tf.io.gfile.GFile(config_file, 'w').write(str(config)) train_input_fn = dataloader.InputReader( FLAGS.train_file_pattern, is_training=True, use_fake_data=FLAGS.use_fake_data, max_instances_per_image=max_instances_per_image) eval_input_fn = dataloader.InputReader( FLAGS.val_file_pattern, is_training=False, use_fake_data=FLAGS.use_fake_data, max_instances_per_image=max_instances_per_image) if FLAGS.strategy == 'tpu': tpu_config = tf.estimator.tpu.TPUConfig( FLAGS.iterations_per_loop if FLAGS.strategy == 'tpu' else 1, num_cores_per_replica=num_cores_per_replica, input_partition_dims=input_partition_dims, per_host_input_for_training=tf.estimator.tpu.InputPipelineConfig .PER_HOST_V2) run_config = tf.estimator.tpu.RunConfig( cluster=tpu_cluster_resolver, model_dir=model_dir, log_step_count_steps=FLAGS.iterations_per_loop, session_config=config_proto, tpu_config=tpu_config, save_checkpoints_steps=FLAGS.save_checkpoints_steps, tf_random_seed=FLAGS.tf_random_seed, ) # TPUEstimator can do both train and eval. train_est = tf.estimator.tpu.TPUEstimator( model_fn=model_fn_instance, train_batch_size=FLAGS.train_batch_size, eval_batch_size=FLAGS.eval_batch_size, config=run_config, params=params) eval_est = train_est else: strategy = None if FLAGS.strategy == 'gpus': strategy = tf.distribute.MirroredStrategy() run_config = tf.estimator.RunConfig( model_dir=model_dir, train_distribute=strategy, log_step_count_steps=FLAGS.iterations_per_loop, session_config=config_proto, save_checkpoints_steps=FLAGS.save_checkpoints_steps, tf_random_seed=FLAGS.tf_random_seed, ) def get_estimator(global_batch_size): params['num_shards'] = getattr(strategy, 'num_replicas_in_sync', 1) params['batch_size'] = global_batch_size // params['num_shards'] return tf.estimator.Estimator( model_fn=model_fn_instance, config=run_config, params=params) # train and eval need different estimator due to different batch size. train_est = get_estimator(FLAGS.train_batch_size) eval_est = get_estimator(FLAGS.eval_batch_size) # start train/eval flow. if FLAGS.mode == 'train': train_est.train(input_fn=train_input_fn, max_steps=train_steps) if FLAGS.eval_after_train: eval_est.evaluate(input_fn=eval_input_fn, steps=eval_steps) elif FLAGS.mode == 'eval': # Run evaluation when there's a new checkpoint for ckpt in tf.train.checkpoints_iterator( FLAGS.model_dir, min_interval_secs=FLAGS.min_eval_interval, timeout=FLAGS.eval_timeout): logging.info('Starting to evaluate.') try: eval_results = eval_est.evaluate(eval_input_fn, steps=eval_steps) # Terminate eval job when final checkpoint is reached. try: current_step = int(os.path.basename(ckpt).split('-')[1]) except IndexError: logging.info('%s has no global step info: stop!', ckpt) break utils.archive_ckpt(eval_results, eval_results['AP'], ckpt) if current_step >= train_steps: logging.info('Eval finished step %d/%d', current_step, train_steps) break except tf.errors.NotFoundError: # Checkpoint might be not already deleted by the time eval finished. # We simply skip ssuch case. logging.info('Checkpoint %s no longer exists, skipping.', ckpt) elif FLAGS.mode == 'train_and_eval': ckpt = tf.train.latest_checkpoint(FLAGS.model_dir) try: step = int(os.path.basename(ckpt).split('-')[1]) current_epoch = ( step * FLAGS.train_batch_size // FLAGS.num_examples_per_epoch) logging.info('found ckpt at step %d (epoch %d)', step, current_epoch) except (IndexError, TypeError): logging.info('Folder %s has no ckpt with valid step.', FLAGS.model_dir) current_epoch = 0 def run_train_and_eval(e): print('\n =====> Starting training, epoch: %d.' % e) train_est.train( input_fn=train_input_fn, max_steps=e * FLAGS.num_examples_per_epoch // FLAGS.train_batch_size) print('\n =====> Starting evaluation, epoch: %d.' % e) eval_results = eval_est.evaluate(input_fn=eval_input_fn, steps=eval_steps) ckpt = tf.train.latest_checkpoint(FLAGS.model_dir) utils.archive_ckpt(eval_results, eval_results['AP'], ckpt) epochs_per_cycle = 1 # higher number has less graph construction overhead. for e in range(current_epoch + 1, config.num_epochs + 1, epochs_per_cycle): if FLAGS.run_epoch_in_child_process: p = multiprocessing.Process(target=run_train_and_eval, args=(e,)) p.start() p.join() if p.exitcode != 0: return p.exitcode else: tf.reset_default_graph() run_train_and_eval(e) else: logging.info('Invalid mode: %s', FLAGS.mode)
def __init__(self, model_name): self.model_name = model_name config = hparams_config.get_detection_config(model_name) config.image_size = utils.parse_image_size(config.image_size) config.update({'debug': False}) self.config = config
def main(_): # Parse and override hparams config = hparams_config.get_detection_config(FLAGS.model_name) config.override(FLAGS.hparams) if FLAGS.num_epochs: # NOTE: remove this flag after updating all docs. config.num_epochs = FLAGS.num_epochs # Parse image size in case it is in string format. config.image_size = utils.parse_image_size(config.image_size) if FLAGS.use_xla and FLAGS.strategy != 'tpu': tf.config.optimizer.set_jit(True) for gpu in tf.config.list_physical_devices('GPU'): tf.config.experimental.set_memory_growth(gpu, True) if FLAGS.debug: tf.config.run_functions_eagerly(True) tf.debugging.set_log_device_placement(True) os.environ['TF_DETERMINISTIC_OPS'] = '1' tf.random.set_seed(FLAGS.tf_random_seed) logging.set_verbosity(logging.DEBUG) if FLAGS.strategy == 'tpu': tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver( FLAGS.tpu, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) tf.config.experimental_connect_to_cluster(tpu_cluster_resolver) tf.tpu.experimental.initialize_tpu_system(tpu_cluster_resolver) ds_strategy = tf.distribute.TPUStrategy(tpu_cluster_resolver) logging.info('All devices: %s', tf.config.list_logical_devices('TPU')) elif FLAGS.strategy == 'gpus': ds_strategy = tf.distribute.MirroredStrategy() logging.info('All devices: %s', tf.config.list_physical_devices('GPU')) else: if tf.config.list_physical_devices('GPU'): ds_strategy = tf.distribute.OneDeviceStrategy('device:GPU:0') else: ds_strategy = tf.distribute.OneDeviceStrategy('device:CPU:0') steps_per_epoch = FLAGS.num_examples_per_epoch // FLAGS.batch_size params = dict(profile=FLAGS.profile, model_name=FLAGS.model_name, steps_per_execution=FLAGS.steps_per_execution, model_dir=FLAGS.model_dir, steps_per_epoch=steps_per_epoch, strategy=FLAGS.strategy, batch_size=FLAGS.batch_size, tf_random_seed=FLAGS.tf_random_seed, debug=FLAGS.debug, val_json_file=FLAGS.val_json_file, eval_samples=FLAGS.eval_samples, num_shards=ds_strategy.num_replicas_in_sync) config.override(params, True) # set mixed precision policy by keras api. precision = utils.get_precision(config.strategy, config.mixed_precision) policy = tf.keras.mixed_precision.Policy(precision) tf.keras.mixed_precision.set_global_policy(policy) def get_dataset(is_training, config): file_pattern = (FLAGS.train_file_pattern if is_training else FLAGS.val_file_pattern) if not file_pattern: raise ValueError('No matching files.') return dataloader.InputReader( file_pattern, is_training=is_training, use_fake_data=FLAGS.use_fake_data, max_instances_per_image=config.max_instances_per_image, debug=FLAGS.debug)(config.as_dict()) with ds_strategy.scope(): if config.model_optimizations: tfmot.set_config(config.model_optimizations.as_dict()) if FLAGS.hub_module_url: model = train_lib.EfficientDetNetTrainHub( config=config, hub_module_url=FLAGS.hub_module_url) else: model = train_lib.EfficientDetNetTrain(config=config) model = setup_model(model, config) if FLAGS.pretrained_ckpt and not FLAGS.hub_module_url: ckpt_path = tf.train.latest_checkpoint(FLAGS.pretrained_ckpt) util_keras.restore_ckpt(model, ckpt_path, config.moving_average_decay) init_experimental(config) if 'train' in FLAGS.mode: val_dataset = get_dataset(False, config) if 'eval' in FLAGS.mode else None model.fit( get_dataset(True, config), epochs=config.num_epochs, steps_per_epoch=steps_per_epoch, callbacks=train_lib.get_callbacks(config.as_dict(), val_dataset), validation_data=val_dataset, validation_steps=(FLAGS.eval_samples // FLAGS.batch_size)) else: # Continuous eval. for ckpt in tf.train.checkpoints_iterator(FLAGS.model_dir, min_interval_secs=180): logging.info('Starting to evaluate.') # Terminate eval job when final checkpoint is reached. try: current_epoch = int(os.path.basename(ckpt).split('-')[1]) except IndexError: current_epoch = 0 val_dataset = get_dataset(False, config) logging.info('start loading model.') model.load_weights(tf.train.latest_checkpoint(FLAGS.model_dir)) logging.info('finish loading model.') coco_eval = train_lib.COCOCallback(val_dataset, 1) coco_eval.set_model(model) eval_results = coco_eval.on_epoch_end(current_epoch) logging.info('eval results for %s: %s', ckpt, eval_results) try: utils.archive_ckpt(eval_results, eval_results['AP'], ckpt) except tf.errors.NotFoundError: # Checkpoint might be not already deleted by the time eval finished. logging.info('Checkpoint %s no longer exists, skipping.', ckpt) if current_epoch >= config.num_epochs or not current_epoch: logging.info('Eval epoch %d / %d', current_epoch, config.num_epochs) break