コード例 #1
0
ファイル: train2.py プロジェクト: vermashresth/PEGGY
def get_game(opt):
    feat_size = 4096
    out_hidden_size = 20
    emb_size = 10
    sender = InformedSender(opt.game_size,
                            feat_size,
                            opt.embedding_size,
                            opt.hidden_size,
                            out_hidden_size,
                            temp=opt.tau_s)
    receiver = Receiver(opt.game_size,
                        feat_size,
                        opt.embedding_size,
                        out_hidden_size,
                        reinforce=(opts.mode == 'rf'))
    if opts.mode == 'rf':
        sender = core.RnnSenderReinforce(sender,
                                         opt.vocab_size,
                                         emb_size,
                                         out_hidden_size,
                                         cell="gru",
                                         max_len=2)
        receiver = core.RnnReceiverReinforce(receiver,
                                             opt.vocab_size,
                                             emb_size,
                                             out_hidden_size,
                                             cell="gru")
        game = core.SenderReceiverRnnReinforce(sender,
                                               receiver,
                                               loss,
                                               sender_entropy_coeff=0.01,
                                               receiver_entropy_coeff=0.01)
    elif opts.mode == 'gs':
        sender = core.GumbelSoftmaxWrapper(sender, temperature=opt.gs_tau)
        game = core.SymbolGameGS(sender, receiver, loss_nll)
    else:
        raise RuntimeError(f"Unknown training mode: {opts.mode}")

    return game
コード例 #2
0
ファイル: game.py プロジェクト: stringguardian15/EGG
                                 num_workers=1)

    assert train_loader or dump_loader, 'Either training or dump data must be specified'
    sender, receiver, loss = build_model(opts, train_loader, dump_loader)

    if opts.train_mode.lower() == 'rf':
        sender = core.RnnSenderReinforce(sender,
                                         opts.vocab_size,
                                         opts.sender_embedding,
                                         opts.sender_hidden,
                                         cell=opts.sender_cell,
                                         max_len=opts.max_len,
                                         num_layers=opts.sender_layers)
        receiver = core.RnnReceiverReinforce(receiver,
                                             opts.vocab_size,
                                             opts.receiver_embedding,
                                             opts.receiver_hidden,
                                             cell=opts.receiver_cell,
                                             num_layers=opts.receiver_layers)

        game = core.SenderReceiverRnnReinforce(
            sender,
            receiver,
            non_differentiable_loss,
            sender_entropy_coeff=opts.sender_entropy_coeff,
            receiver_entropy_coeff=opts.receiver_entropy_coeff)
    elif opts.train_mode.lower() == 'gs':
        sender = core.RnnSenderGS(sender,
                                  opts.vocab_size,
                                  opts.sender_embedding,
                                  opts.sender_hidden,
                                  cell=opts.sender_cell,
コード例 #3
0
ファイル: train.py プロジェクト: vermashresth/PEGGY
def get_my_game(opt):
    feat_size = 4096
    out_hidden_size = 20
    emb_size = 10
    pop = opts.pop_size
    sender_list = []
    receiver_list = []
    for i in range(pop):
        if not opts.multi_head:
            sender = InformedSender(opt.game_size,
                                    feat_size,
                                    opt.embedding_size,
                                    opt.hidden_size,
                                    out_hidden_size,
                                    temp=opt.tau_s)
        else:
            sender = InformedSenderMultiHead(opt.game_size,
                                             feat_size,
                                             opt.embedding_size,
                                             opt.hidden_size,
                                             out_hidden_size,
                                             temp=opt.tau_s)
        receiver = MyReceiver(opt.game_size,
                              feat_size,
                              opt.embedding_size,
                              out_hidden_size,
                              reinforce=(opts.mode == 'rf'))

        if opts.mode == 'rf':
            sender = core.MyRnnSenderReinforce(sender,
                                               opt.vocab_size,
                                               emb_size,
                                               out_hidden_size,
                                               multi_head=opt.multi_head,
                                               cell="gru",
                                               max_len=opt.max_len)
            receiver = core.RnnReceiverReinforce(receiver,
                                                 opt.vocab_size,
                                                 emb_size,
                                                 out_hidden_size,
                                                 cell="gru")
        elif opts.mode == 'gs':
            sender = core.GumbelSoftmaxWrapper(sender, temperature=opt.gs_tau)
        else:
            raise RuntimeError(f"Unknown training mode: {opts.mode}")

        sender_list.append(sender)
        receiver_list.append(receiver)

    if opts.mode == 'rf':
        if opts.pop_mode == 0:
            game = core.PopSenderReceiverRnnReinforce(
                sender_list,
                receiver_list,
                pop,
                loss,
                sender_entropy_coeff=0.01,
                receiver_entropy_coeff=0.01)
        elif opts.pop_mode == 1:
            game = core.PopUncSenderReceiverRnnReinforce(
                sender_list,
                receiver_list,
                pop,
                loss,
                use_critic_baseline=False,
                sender_entropy_coeff=0.01,
                receiver_entropy_coeff=0.01)
        else:
            game = core.PopUncSenderReceiverRnnReinforce(
                sender_list,
                receiver_list,
                pop,
                loss,
                use_critic_baseline=True,
                sender_entropy_coeff=0.01,
                receiver_entropy_coeff=0.01)

    elif opts.mode == 'gs':
        game = core.PopSymbolGameGS(sender_list, receiver_list, pop, loss_nll)
    else:
        raise RuntimeError(f"Unknown training mode: {opts.mode}")

    return game