コード例 #1
0
ファイル: test_cm.py プロジェクト: wenshuoliu/baseline
def test_mcc_inverse():
    golds = np.concatenate(
        (np.arange(2), np.random.randint(0, 2, size=np.random.randint(4,
                                                                      100))),
        axis=0)
    preds = 1 - golds
    cm = ConfusionMatrix.create(golds, preds)
    np.testing.assert_allclose(cm.get_mcc(), -1.0, TOL)
コード例 #2
0
ファイル: test_cm.py プロジェクト: wenshuoliu/baseline
 def test():
     C = np.random.randint(3, 11)
     golds = np.concatenate(
         (np.arange(C),
          np.random.randint(0, C, size=np.random.randint(4, 100))),
         axis=0)
     preds = np.random.randint(0, C, size=len(golds))
     cm = ConfusionMatrix.create(golds, preds)
     np.testing.assert_allclose(cm.get_r_k(), explicit_r_k(cm._cm), TOL)
コード例 #3
0
ファイル: test_cm.py プロジェクト: wenshuoliu/baseline
def test_r_k_inverse():
    """The worst value for R k ranges from -1 to 0 depending on the distribution of the true labels."""
    C = np.random.randint(2, 11)
    golds = np.concatenate(
        (np.arange(C), np.random.randint(0, C, size=np.random.randint(4,
                                                                      100))),
        axis=0)
    preds = golds + 1 % C
    cm = ConfusionMatrix.create(golds, preds)
    assert -1.0 <= cm.get_r_k() <= 0.0
コード例 #4
0
ファイル: test_cm.py プロジェクト: wenshuoliu/baseline
def test_r_k_perfect():
    """Perfect correlation results in a score of 1."""
    C = np.random.randint(2, 11)
    golds = np.concatenate(
        (np.arange(C), np.random.randint(0, C, size=np.random.randint(4,
                                                                      100))),
        axis=0)
    preds = np.copy(golds)
    cm = ConfusionMatrix.create(golds, preds)
    np.testing.assert_allclose(cm.get_r_k(), 1.0)
コード例 #5
0
ファイル: test_cm.py プロジェクト: wenshuoliu/baseline
 def test():
     golds = np.concatenate(
         (np.arange(2),
          np.random.randint(0, 2, size=np.random.randint(4, 100))),
         axis=0)
     preds = np.random.randint(0, 2, size=len(golds))
     cm = ConfusionMatrix.create(golds, preds)
     np.testing.assert_allclose(cm.get_mcc(), explicit_mcc(golds, preds),
                                TOL)
     np.testing.assert_allclose(cm.get_mcc(), author_mcc(cm._cm), TOL, TOL)
コード例 #6
0
ファイル: test_cm.py プロジェクト: wenshuoliu/baseline
def test_mcc_example():
    Y_TRUE = [1, 1, 1, 0]
    Y_PRED = [1, 0, 1, 1]
    MCC_GOLD = -0.3333333333333333
    cm = ConfusionMatrix.create(Y_TRUE, Y_PRED)
    np.testing.assert_allclose(cm.get_mcc(), MCC_GOLD, TOL)
コード例 #7
0
ファイル: test_cm.py プロジェクト: wenshuoliu/baseline
def test_create_cm():
    gold = make_mc_cm()
    cm = ConfusionMatrix.create(Y_TRUE, Y_PRED)
    np.testing.assert_equal(gold._cm, cm._cm)