コード例 #1
0
ファイル: test_conll.py プロジェクト: wenshuoliu/baseline
def test_write_conll():
    data = read_conll(TEST_FILE)
    out_ = StringIO()
    write_conll(out_, data, delim=" ")
    out_.seek(0)
    with open(TEST_FILE) as gold:
        assert out_.read().strip("\n") == gold.read().strip("\n")
コード例 #2
0
ファイル: test_conll.py プロジェクト: wenshuoliu/baseline
def test_write_conll_with_delims():
    delim = random.choice(["~~", "|", "\t"])
    data = read_conll(TEST_FILE)
    out_ = StringIO()
    write_conll(out_, data, delim=delim)
    out_.seek(0)
    with open(TEST_FILE) as gold:
        assert out_.read().strip("\n") == gold.read().strip("\n").replace(
            " ", delim)
コード例 #3
0
ファイル: deps_text.py プロジェクト: dpressel/mead-baseline
def main():
    parser = argparse.ArgumentParser(description='Parse dependencies on text with a model')
    parser.add_argument('--model', help='A tagger model with extended features', required=True, type=str)
    parser.add_argument('--text', help='raw value', type=str)
    parser.add_argument('--conll', help='is file type conll?', type=str2bool, default=False)
    parser.add_argument('--features', help='(optional) features in the format feature_name:index (column # in conll) or '
                                           'just feature names (assumed sequential)', default=[], nargs='+')
    parser.add_argument('--backend', help='backend', default='pytorch')
    parser.add_argument('--device', help='device')
    parser.add_argument('--remote', help='(optional) remote endpoint', type=str) # localhost:8500
    parser.add_argument('--name', help='(optional) signature name', type=str)
    parser.add_argument('--preproc', help='(optional) where to perform preprocessing', choices={'client', 'server'}, default='client')
    parser.add_argument('--export_mapping', help='mapping between features and the fields in the grpc/ REST '
                                                             'request, eg: token:word ner:ner. This should match with the '
                                                             '`exporter_field` definition in the mead config',
                        default=[], nargs='+')
    parser.add_argument('--batchsz', default=64, help="How many examples to run through the model at once", type=int)

    args = parser.parse_args()

    if os.path.exists(args.text) and os.path.isfile(args.text):
        texts = []
        if args.conll:
            feature_indices = feature_index_mapping(args.features)
            for sentence in read_conll(args.text):
                if feature_indices:
                    texts.append([{k: line[v] for k, v in feature_indices.items()} for line in sentence])
                else:
                    texts.append([line[0] for line in sentence])
        else:
            with open(args.text, 'r') as f:
                for line in f:
                    text = line.strip().split()
                    texts += [text]
    else:
        texts = [args.text.split()]

    m = bl.DependencyParserService.load(args.model, backend=args.backend, remote=args.remote,
                                        name=args.name, preproc=args.preproc, device=args.device)

    batched = [texts[i:i+args.batchsz] for i in range(0, len(texts), args.batchsz)]

    for texts in batched:
        for sen in m.predict(texts, export_mapping=create_export_mapping(args.export_mapping)):
            for word_tag in sen:
                print("{} {} {}".format(word_tag['text'], word_tag['label'], word_tag['head']))
            print()
コード例 #4
0
ファイル: test_conll.py プロジェクト: dpressel/mead-layers
def test_read_conll_metadata_comments_conflict():
    with pytest.raises(ValueError):
        next(read_conll(StringIO("a"), metadata=True, allow_comments=False))
コード例 #5
0
def main():
    parser = argparse.ArgumentParser(description='Tag text with a model')
    parser.add_argument('--model',
                        help='A tagger model with extended features',
                        required=True,
                        type=str)
    parser.add_argument('--text', help='raw value', type=str)
    parser.add_argument('--conll',
                        help='is file type conll?',
                        type=str2bool,
                        default=False)
    parser.add_argument(
        '--features',
        help=
        '(optional) features in the format feature_name:index (column # in conll) or '
        'just feature names (assumed sequential)',
        default=[],
        nargs='+')
    parser.add_argument('--backend', help='backend', default='tf')
    parser.add_argument('--device', help='device')
    parser.add_argument('--remote',
                        help='(optional) remote endpoint',
                        type=str)  # localhost:8500
    parser.add_argument('--name', help='(optional) signature name', type=str)
    parser.add_argument('--preproc',
                        help='(optional) where to perform preprocessing',
                        choices={'client', 'server'},
                        default='client')
    parser.add_argument(
        '--export_mapping',
        help='mapping between features and the fields in the grpc/ REST '
        'request, eg: token:word ner:ner. This should match with the '
        '`exporter_field` definition in the mead config',
        default=[],
        nargs='+')
    parser.add_argument(
        '--prefer_eager',
        help="If running in TensorFlow, should we prefer eager model",
        type=str2bool)
    parser.add_argument('--modules', default=[], nargs="+")
    parser.add_argument(
        '--batchsz',
        default=64,
        help="How many examples to run through the model at once",
        type=int)

    args = parser.parse_args()

    if args.backend == 'tf':
        from eight_mile.tf.layers import set_tf_eager_mode
        set_tf_eager_mode(args.prefer_eager)

    for mod_name in args.modules:
        bl.import_user_module(mod_name)

    def create_export_mapping(feature_map_strings):
        feature_map_strings = [
            x.strip() for x in feature_map_strings if x.strip()
        ]
        if not feature_map_strings:
            return {}
        else:
            return {
                x[0]: x[1]
                for x in [y.split(':') for y in feature_map_strings]
            }

    def feature_index_mapping(features):
        if not features:
            return {}
        elif ':' in features[0]:
            return {
                feature.split(':')[0]: int(feature.split(':')[1])
                for feature in features
            }
        else:
            return {feature: index for index, feature in enumerate(features)}

    if os.path.exists(args.text) and os.path.isfile(args.text):
        texts = []
        if args.conll:
            feature_indices = feature_index_mapping(args.features)
            for sentence in read_conll(args.text):
                if feature_indices:
                    texts.append(
                        [{k: line[v]
                          for k, v in feature_indices.items()}
                         for line in sentence])
                else:
                    texts.append([line[0] for line in sentence])
        else:
            with open(args.text, 'r') as f:
                for line in f:
                    text = line.strip().split()
                    texts += [text]
    else:
        texts = [args.text.split()]

    m = bl.TaggerService.load(args.model,
                              backend=args.backend,
                              remote=args.remote,
                              name=args.name,
                              preproc=args.preproc,
                              device=args.device)

    batched = [
        texts[i:i + args.batchsz] for i in range(0, len(texts), args.batchsz)
    ]

    for texts in batched:
        for sen in m.predict(texts,
                             export_mapping=create_export_mapping(
                                 args.export_mapping)):
            for word_tag in sen:
                print("{} {}".format(word_tag['text'], word_tag['label']))
            print()
コード例 #6
0
    if not features:
        return {}
    elif ':' in features[0]:
        return {
            feature.split(':')[0]: int(feature.split(':')[1])
            for feature in features
        }
    else:
        return {feature: index for index, feature in enumerate(features)}


if os.path.exists(args.text) and os.path.isfile(args.text):
    texts = []
    if args.conll:
        feature_indices = feature_index_mapping(args.features)
        for sentence in read_conll(args.text):
            if feature_indices:
                texts.append([{k: line[v]
                               for k, v in feature_indices.items()}
                              for line in sentence])
            else:
                texts.append([line[0] for line in sentence])
    else:
        with open(args.text, 'r') as f:
            for line in f:
                text = line.strip().split()
                texts += [text]
else:
    texts = [args.text.split()]

m = bl.TaggerService.load(args.model,
コード例 #7
0
def main():
    parser = argparse.ArgumentParser(
        description='Jointly Classify and Tag text with a model')
    parser.add_argument('--model',
                        help='A tagger model with extended features',
                        required=True,
                        type=str)
    parser.add_argument('--text', help='raw value', type=str)
    parser.add_argument('--conll',
                        help='is file type conll?',
                        type=str2bool,
                        default=False)
    parser.add_argument(
        '--ignore_first_token',
        help='if the input file is in conll format, and the first token'
        ' in the sentence is the class label, ignore it',
        type=str2bool,
        default=False)
    parser.add_argument(
        '--features',
        help=
        '(optional) features in the format feature_name:index (column # in conll) or '
        'just feature names (assumed sequential)',
        default=[],
        nargs='+')
    parser.add_argument('--backend', help='backend', default='pytorch')
    parser.add_argument('--device', help='device')
    parser.add_argument('--remote',
                        help='(optional) remote endpoint',
                        type=str)  # localhost:8500
    parser.add_argument('--name', help='(optional) signature name', type=str)
    parser.add_argument('--preproc',
                        help='(optional) where to perform preprocessing',
                        choices={'client', 'server'},
                        default='client')
    parser.add_argument(
        '--export_mapping',
        help='mapping between features and the fields in the grpc/ REST '
        'request, eg: token:word ner:ner. This should match with the '
        '`exporter_field` definition in the mead config',
        default=[],
        nargs='+')
    parser.add_argument('--modules', default=[], nargs="+")
    parser.add_argument('--out_fmt', nargs="+")
    parser.add_argument(
        '--batchsz',
        default=8,
        help="How many examples to run through the model at once",
        type=int)

    args = parser.parse_args()

    def create_export_mapping(feature_map_strings):
        feature_map_strings = [
            x.strip() for x in feature_map_strings if x.strip()
        ]
        if not feature_map_strings:
            return {}
        else:
            return {
                x[0]: x[1]
                for x in [y.split(':') for y in feature_map_strings]
            }

    def feature_index_mapping(features):
        if not features:
            return {}
        elif ':' in features[0]:
            return {
                feature.split(':')[0]: int(feature.split(':')[1])
                for feature in features
            }
        else:
            return {feature: index for index, feature in enumerate(features)}

    if os.path.exists(args.text) and os.path.isfile(args.text):
        texts = []
        if args.conll:
            feature_indices = feature_index_mapping(args.features)
            for sentence in read_conll(args.text):
                if args.ignore_first_token:
                    sentence.pop(0)
                if feature_indices:
                    texts.append(
                        [{k: line[v]
                          for k, v in feature_indices.items()}
                         for line in sentence])
                else:
                    texts.append([line[0] for line in sentence])
        else:
            with open(args.text, 'r') as f:
                for line in f:
                    text = line.strip().split()
                    texts += [text]
    else:
        texts = [args.text.split()]

    m = bl.JointTaggerService.load(args.model,
                                   backend=args.backend,
                                   remote=args.remote,
                                   name=args.name,
                                   preproc=args.preproc,
                                   device=args.device)

    batched = [
        texts[i:i + args.batchsz] for i in range(0, len(texts), args.batchsz)
    ]

    if args.out_fmt:
        out_fmt = lambda w: ' '.join(w[f] for f in args.out_fmt)
    else:
        out_fmt = lambda w: f"{w['text']} {w['label']}"
    for texts in batched:
        for class_prediction, tags_prediction in m.predict(
                texts,
                export_mapping=create_export_mapping(args.export_mapping)):
            print(f"Class Label:{class_prediction}")
            for word_tag in tags_prediction:

                print(out_fmt(word_tag))
            print()