def test_plot_calls_plt_show(mock_show, dummy_data): geodesic = dummy_data cl = StaticGeodesicPlotter() cl.plot(geodesic) cl.show() mock_show.assert_called_with() assert cl.attractor_present
def test_plot_calls_plt_show(mock_show, dummy_data): sph_obj, _, m, _, el, ss = dummy_data cl = StaticGeodesicPlotter(m) cl.plot(sph_obj, el, ss) cl.show() mock_show.assert_called_with() assert cl._attractor_present
def test_plot_calls_plt_geod_show_view_init(mock_show, dummy_geod): geod = dummy_geod sgpl = StaticGeodesicPlotter() sgpl.plot(geod) sgpl.show(azim=-60, elev=30) mock_show.assert_called_with()
def test_plot_calls_plt_geod_show(mock_show, dummy_geod): geod = dummy_geod sgpl = StaticGeodesicPlotter() sgpl.plot(geod) sgpl.show() mock_show.assert_called_with()
def test_plot_in_3d(mock_show, dummy_data): geodesic = dummy_data cl = StaticGeodesicPlotter(use_3d=True) cl.plot(geodesic) cl.show() mock_show.assert_called_with() assert cl.attractor_present assert cl.ax.name == "3d"
def test_static_geod_plotter_show_clear(mock_show, dummy_geod): geod = dummy_geod sgpl = StaticGeodesicPlotter(draw_ergosphere=False) sgpl.plot(geod) sgpl.show() mock_show.assert_called_with() sgpl.clear() assert sgpl.fig.get_axes() == []
def test_static_geod_plotter_draws_parametric_plot(mock_show, dummy_geod): geod = dummy_geod sgpl = StaticGeodesicPlotter() sgpl.parametric_plot(geod) fig = sgpl.show() mock_show.assert_called_with()
def run(planet): ''' Defining Variables and Objects ''' grav_constant = 6.67430e-20 * u.km**3 / (u.kg * u.s**2) # km3 kg-1 s-2 bodies_list = ['sun', 'mercury', 'venus', 'earth', 'moon'] all_bodies_list = [ 'sun', 'mercury', 'venus', 'earth', 'moon', 'mars', 'jupiter', 'saturn', 'uranus', 'neptune' ] radius = { 'sun': 696340 * u.km, 'mercury': 2439.5 * u.km, 'venus': 6052 * u.km, 'earth': 6371 * u.km, 'moon': 3389.5 * u.km, 'mars': 3389.5 * u.km, 'jupiter': 142984 / 2 * u.km, 'saturn': 120536 / 2 * u.km, 'uranus': 51118 / 2 * u.km, 'neptune': 49528 / 2 * u.km } aphelion = { 'sun': 0 * u.km, 'mercury': 69.8e6 * u.km, 'venus': 108.9e6 * u.km, 'earth': 152.1e6 * u.km, 'moon': 0.406e6 * u.km, 'mars': 249.2e6 * u.km, 'jupiter': 816.6e6 * u.km, 'saturn': 1514.5e6 * u.km, 'uranus': 3003.6e6 * u.km, 'neptune': 4545.7e6 * u.km } perihelion = { 'sun': 0 * u.km, 'mercury': 46.0e6 * u.km, 'venus': 107.5e6 * u.km, 'earth': 147.1e6 * u.km, 'moon': 0.363e6 * u.km, 'mars': 206.6e6 * u.km, 'jupiter': 740.5e6 * u.km, 'saturn': 1352.6e6 * u.km, 'uranus': 2741.3e6 * u.km, 'neptune': 4444.5e6 * u.km } mass = { 'sun': 1.989e30 * u.kg, 'mercury': 0.33e24 * u.kg, 'venus': 4.87e24 * u.kg, 'earth': 5.972e24 * u.kg, 'moon': 7.34767309e22 * u.kg, 'mars': 6.39e23 * u.kg, 'jupiter': 1898e24 * u.kg, 'saturn': 568e24 * u.kg, 'uranus': 86.8e24 * u.kg, 'neptune': 103e24 * u.kg } distances_value = {} speed_at_perihelion = {} omega = {} for body in bodies_list: distances_value[body] = [0 * u.km, perihelion[body], 0 * u.km] if body != 'sun': speed_at_perihelion[body] = np.sqrt(grav_constant * mass['sun'] / perihelion[body]) omega[body] = (u.rad * speed_at_perihelion[body]) / perihelion[body] ''' Spherical Differentiation Objects and Body Objects ''' # args(name=str, mass=kg, R(radius)=units, differential=coordinates of body, # a=spin factor, q=charge, is_attractor=True/False, parent=who's the parent body) sd_obj = {} body_obj = {} for object in bodies_list: if object != 'sun': sd_obj[object] = SphericalDifferential( perihelion[object], np.pi / 2 * u.rad, np.pi * u.rad, 0 * u.km / u.s, 0 * u.rad / u.s, omega[object]) body_obj[object] = Body(name=object, mass=mass[object], differential=sd_obj[object], parent=body_obj['sun']) elif object == 'sun': body_obj[object] = Body(name="sun", mass=mass[object], parent=None) elif object == 'moon': body_obj[object] = Body(name=object, mass=mass[object], differential=sd_obj[object], parent=body_obj['earth']) ''' Calculating Trajectory ''' # Set for a year (in seconds) end_lambda = { 'earth': ((1 * u.year).to(u.s)).value, 'moon': ((1 / 12 * u.year).to(u.s)).value } # Choosing stepsize for ODE solver to be 5 minutes stepsize = { 'earth': ((5 * u.min).to(u.s)).value, 'moon': ((5 / 12 * u.min).to(u.s)).value } ''' Trajectory to Cartesian ''' def get_schwarz(): schwarz_obj = {} schwarz_ans = {} for object in bodies_list: if object != 'sun': schwarz_obj[object] = Schwarzschild.from_coords( sd_obj[object], mass['sun']) schwarz_ans[object] = schwarz_obj[object].calculate_trajectory( end_lambda=end_lambda['earth'], OdeMethodKwargs={"stepsize": stepsize['earth']}, return_cartesian=True) return schwarz_obj, schwarz_ans ''' Calculating Distance ''' # # At Aphelion - r should be 152.1e6 km # r = np.sqrt(np.square(ans[1][:, 1]) + np.square(ans[1][:, 2])) # i = np.argmax(r) # print((r[i] * u.m).to(u.km)) # # speed should be 29.29 km/s # print(((ans[1][i][6]) * u.m / u.s).to(u.km / u.s)) # # eccentricity should be 0.0167 # xlist, ylist = ans[1][:, 1], ans[1][:, 2] # i = np.argmax(ylist) # x, y = xlist[i], ylist[i] # eccentricity = x / (np.sqrt(x ** 2 + y ** 2)) # print(eccentricity) ''' Animating ''' geodesic = {} plotter = {} for object in bodies_list: if object != 'sun': if object == 'moon': geodesic[object] = Geodesic(body=body_obj[object], time=0 * u.s, end_lambda=end_lambda['moon'], step_size=stepsize['moon']) geodesic[object] = Geodesic(body=body_obj[object], time=0 * u.s, end_lambda=end_lambda['earth'], step_size=stepsize['earth']) sgp = StaticGeodesicPlotter() sgp.animate( geodesic[planet], interval=5 ) # Objects currently limited to ['sun', 'mercury', 'venus', 'earth', 'moon'] sgp.show()
sph_obj = SphericalDifferential(130 * u.m, np.pi/2 * u.rad, -np.pi/8 * u.rad, 0 * u.m / u.s, 0 * u.rad / u.s, 1900 * u.rad / u.s) object = Body(differential=sph_obj, parent=attractor) geodesic = Geodesic(body=object, time=0 * u.s, end_lambda=0.002, step_size=5e-8) ''' Plotting Animation ''' obj = StaticGeodesicPlotter() obj.animate(geodesic, interval=10) obj.show()