def doit(self): theory_updates = { "PTO": 2, "ModEv": "perturbative-exact", # "XIR": 0.5, # "fact_to_ren_scale_ratio": 2.0, "Q0": 2, "Qref": 2.0, "alphas": 0.35, "kbThr": 2.71, **vfns, } # t0 = theory_updates.copy() # t0["PTO"] = 0 self.skip_pdfs = lambda _theory: [ 22, -6, 6, "ph", "V35", "V24", "V15", "V8", "T35", ] self.run( [theory_updates], # , t0], operators.build(self.generate_operators()), ["ToyLH"], )
def benchmark_sv(self, pto): """Scale Variation""" th = self.vfns_theory.copy() th.update({"PTO": [pto], "XIR": [0.7071067811865475, 1.4142135623730951]}) self.run( cartesian_product(th), operators.build(operators.apfel_config), ["ToyLH"] )
def benchmark_plain(self, pto): """Plain configuration""" th = self.vfns_theory.copy() th.update({"PTO": [pto]}) self.run( cartesian_product(th), operators.build(operators.apfel_config), ["ToyLH"] )
def benchmark_sv(self, pto): """Scale Variation""" th = self.zm_theory.copy() th.update({ "PTO": [pto], "fact_to_ren_scale_ratio": [np.sqrt(0.5), np.sqrt(2.0)], }) self.run(cartesian_product(th), operators.build(operators.pegasus_config), ["ToyLH"])
def benchmark_kthr(self, pto): """Threshold scale different from heavy quark mass""" th = self.vfns_theory.copy() th.update( { "PTO": [pto], "kcThr": [1.23], "kbThr": [1.45], } ) self.run( cartesian_product(th), operators.build(operators.apfel_config), ["ToyLH"] )
def benchmark_sv(self, pto): """Scale Variation""" ts = [] th = self.ffns_theory.copy() th.update( { "PTO": [pto], "XIR": [np.sqrt(0.5)], "fact_to_ren_scale_ratio": [np.sqrt(2.0)], } ) ts.extend(cartesian_product(th)) th = self.ffns_theory.copy() th.update( { "PTO": [pto], "XIR": [np.sqrt(2.0)], "fact_to_ren_scale_ratio": [np.sqrt(0.5)], } ) ts.extend(cartesian_product(th)) self.run(ts, operators.build(operators.apfel_config), ["ToyLH"])