def __init__( self, client=None, index_pattern=None, display_names=None, index_field=None, to_copy=None, ) -> None: # Implement copy as we don't deep copy the client if to_copy is not None: self._client = to_copy._client self._index_pattern = to_copy._index_pattern self._index = Index(self, to_copy._index.es_index_field) self._operations = copy.deepcopy(to_copy._operations) self._mappings: FieldMappings = copy.deepcopy(to_copy._mappings) else: self._client = ensure_es_client(client) self._index_pattern = index_pattern # Get and persist mappings, this allows us to correctly # map returned types from Elasticsearch to pandas datatypes self._mappings: FieldMappings = FieldMappings( client=self._client, index_pattern=self._index_pattern, display_names=display_names, ) self._index = Index(self, index_field) self._operations = Operations()
def test_extended_stats_optimization(): # Tests that when '<agg>' and an 'extended_stats' agg are used together # that ('extended_stats', '<agg>') is used instead of '<agg>'. es_aggs = Operations._map_pd_aggs_to_es_aggs(["count", "nunique"]) assert es_aggs == ["count", "cardinality"] for pd_agg in ["var", "std"]: extended_es_agg = Operations._map_pd_aggs_to_es_aggs([pd_agg])[0] es_aggs = Operations._map_pd_aggs_to_es_aggs([pd_agg, "nunique"]) assert es_aggs == [extended_es_agg, "cardinality"] es_aggs = Operations._map_pd_aggs_to_es_aggs(["count", pd_agg, "nunique"]) assert es_aggs == [("extended_stats", "count"), extended_es_agg, "cardinality"]
def test_all_aggs(): es_aggs = Operations._map_pd_aggs_to_es_aggs( ["min", "max", "mean", "std", "var", "mad", "count", "nunique", "median"] ) assert es_aggs == [ ("extended_stats", "min"), ("extended_stats", "max"), ("extended_stats", "avg"), ("extended_stats", "std_deviation"), ("extended_stats", "variance"), "median_absolute_deviation", ("extended_stats", "count"), "cardinality", ("percentiles", "50.0"), ]
def test_all_aggs(): es_aggs = Operations._map_pd_aggs_to_es_aggs( [ "min", "max", "mean", "std", "var", "mad", "count", "nunique", "median", "quantile", ], percentiles=[0.2, 0.5, 0.8], ) assert es_aggs == [ ("extended_stats", "min"), ("extended_stats", "max"), ("extended_stats", "avg"), ("extended_stats", "std_deviation"), ("extended_stats", "variance"), "median_absolute_deviation", "value_count", "cardinality", ("percentiles", (50.0, )), ( "percentiles", ( 0.2, 0.5, 0.8, ), ), ]
class QueryCompiler: """ Some notes on what can and can not be mapped: 1. df.head(10) /_search?size=10 2. df.tail(10) /_search?size=10&sort=_doc:desc + post_process results (sort_index) 3. df[['OriginAirportID', 'AvgTicketPrice', 'Carrier']] /_search { '_source': ['OriginAirportID', 'AvgTicketPrice', 'Carrier']} 4. df.drop(['1', '2']) /_search {'query': {'bool': {'must': [], 'must_not': [{'ids': {'values': ['1', '2']}}]}}, 'aggs': {}} This doesn't work is size is set (e.g. head/tail) as we don't know in Elasticsearch if values '1' or '2' are in the first/last n fields. A way to mitigate this would be to post process this drop - TODO """ def __init__( self, client=None, index_pattern=None, display_names=None, index_field=None, to_copy=None, ) -> None: # Implement copy as we don't deep copy the client if to_copy is not None: self._client = to_copy._client self._index_pattern = to_copy._index_pattern self._index = Index(self, to_copy._index.es_index_field) self._operations = copy.deepcopy(to_copy._operations) self._mappings: FieldMappings = copy.deepcopy(to_copy._mappings) else: self._client = ensure_es_client(client) self._index_pattern = index_pattern # Get and persist mappings, this allows us to correctly # map returned types from Elasticsearch to pandas datatypes self._mappings: FieldMappings = FieldMappings( client=self._client, index_pattern=self._index_pattern, display_names=display_names, ) self._index = Index(self, index_field) self._operations = Operations() @property def index(self) -> Index: return self._index @property def columns(self) -> pd.Index: columns = self._mappings.display_names return pd.Index(columns) def _get_display_names(self): display_names = self._mappings.display_names return pd.Index(display_names) def _set_display_names(self, display_names): self._mappings.display_names = display_names def get_field_names(self, include_scripted_fields): return self._mappings.get_field_names(include_scripted_fields) def add_scripted_field(self, scripted_field_name, display_name, pd_dtype): result = self.copy() self._mappings.add_scripted_field(scripted_field_name, display_name, pd_dtype) return result @property def dtypes(self) -> pd.Series: return self._mappings.dtypes() @property def es_dtypes(self) -> pd.Series: return self._mappings.es_dtypes() # END Index, columns, and dtypes objects def _es_results_to_pandas(self, results, batch_size=None, show_progress=False): """ Parameters ---------- results: dict Elasticsearch results from self.client.search Returns ------- df: pandas.DataFrame _source values extracted from results and mapped to pandas DataFrame dtypes are mapped via Mapping object Notes ----- Fields containing lists in Elasticsearch don't map easily to pandas.DataFrame For example, an index with mapping: ``` "mappings" : { "properties" : { "group" : { "type" : "keyword" }, "user" : { "type" : "nested", "properties" : { "first" : { "type" : "keyword" }, "last" : { "type" : "keyword" } } } } } ``` Adding a document: ``` "_source" : { "group" : "amsterdam", "user" : [ { "first" : "John", "last" : "Smith" }, { "first" : "Alice", "last" : "White" } ] } ``` (https://www.elastic.co/guide/en/elasticsearch/reference/current/nested.html) this would be transformed internally (in Elasticsearch) into a document that looks more like this: ``` { "group" : "amsterdam", "user.first" : [ "alice", "john" ], "user.last" : [ "smith", "white" ] } ``` When mapping this a pandas data frame we mimic this transformation. Similarly, if a list is added to Elasticsearch: ``` PUT my_index/_doc/1 { "list" : [ 0, 1, 2 ] } ``` The mapping is: ``` "mappings" : { "properties" : { "user" : { "type" : "long" } } } ``` TODO - explain how lists are handled (https://www.elastic.co/guide/en/elasticsearch/reference/current/array.html) TODO - an option here is to use Elasticsearch's multi-field matching instead of pandas treatment of lists (which isn't great) NOTE - using this lists is generally not a good way to use this API """ partial_result = False if results is None: return partial_result, self._empty_pd_ef() # This is one of the most performance critical areas of eland, and it repeatedly calls # self._mappings.field_name_pd_dtype and self._mappings.date_field_format # therefore create a simple cache for this data field_mapping_cache = FieldMappingCache(self._mappings) rows = [] index = [] if isinstance(results, dict): iterator = results["hits"]["hits"] if batch_size is not None: raise NotImplementedError( "Can not specify batch_size with dict results") else: iterator = results i = 0 for hit in iterator: i = i + 1 if "_source" in hit: row = hit["_source"] else: row = {} # script_fields appear in 'fields' if "fields" in hit: fields = hit["fields"] for key, value in fields.items(): row[key] = value # get index value - can be _id or can be field value in source if self._index.is_source_field: index_field = row[self._index.es_index_field] else: index_field = hit[self._index.es_index_field] index.append(index_field) # flatten row to map correctly to 2D DataFrame rows.append(self._flatten_dict(row, field_mapping_cache)) if batch_size is not None: if i >= batch_size: partial_result = True break if show_progress: if i % DEFAULT_PROGRESS_REPORTING_NUM_ROWS == 0: print(f"{datetime.now()}: read {i} rows") # Create pandas DataFrame df = pd.DataFrame(data=rows, index=index) # _source may not contain all field_names in the mapping # therefore, fill in missing field_names # (note this returns self.field_names NOT IN df.columns) missing_field_names = list( set(self.get_field_names(include_scripted_fields=True)) - set(df.columns)) for missing in missing_field_names: pd_dtype = self._mappings.field_name_pd_dtype(missing) df[missing] = pd.Series(dtype=pd_dtype) # Rename columns df.rename(columns=self._mappings.get_renames(), inplace=True) # Sort columns in mapping order if len(self.columns) > 1: df = df[self.columns] if show_progress: print(f"{datetime.now()}: read {i} rows") return partial_result, df def _flatten_dict(self, y, field_mapping_cache): out = {} def flatten(x, name=""): # We flatten into source fields e.g. if type=geo_point # location: {lat=52.38, lon=4.90} if name == "": is_source_field = False pd_dtype = "object" else: try: pd_dtype = field_mapping_cache.field_name_pd_dtype( name[:-1]) is_source_field = True except KeyError: is_source_field = False pd_dtype = "object" if not is_source_field and type(x) is dict: for a in x: flatten(x[a], name + a + ".") elif not is_source_field and type(x) is list: for a in x: flatten(a, name) elif is_source_field: # only print source fields from mappings # (TODO - not so efficient for large number of fields and filtered mapping) field_name = name[:-1] # Coerce types - for now just datetime if pd_dtype == "datetime64[ns]": x = elasticsearch_date_to_pandas_date( x, field_mapping_cache.date_field_format(field_name)) # Elasticsearch can have multiple values for a field. These are represented as lists, so # create lists for this pivot (see notes above) if field_name in out: if type(out[field_name]) is not list: field_as_list = [out[field_name]] out[field_name] = field_as_list out[field_name].append(x) else: out[field_name] = x else: # Script fields end up here # Elasticsearch returns 'Infinity' as a string for np.inf values. # Map this to a numeric value to avoid this whole Series being classed as an object # TODO - create a lookup for script fields and dtypes to only map 'Infinity' # if the field is numeric. This implementation will currently map # any script field with "Infinity" as a string to np.inf if x == "Infinity": out[name[:-1]] = np.inf else: out[name[:-1]] = x flatten(y) return out def _index_count(self) -> int: """ Returns ------- index_count: int Count of docs where index_field exists """ return self._operations.index_count(self, self.index.es_index_field) def _index_matches_count(self, items): """ Returns ------- index_count: int Count of docs where items exist """ return self._operations.index_matches_count(self, self.index.es_index_field, items) def _empty_pd_ef(self): # Return an empty dataframe with correct columns and dtypes df = pd.DataFrame() for c, d in zip(self.dtypes.index, self.dtypes.values): df[c] = pd.Series(dtype=d) return df def copy(self): return QueryCompiler(to_copy=self) def rename(self, renames, inplace=False): if inplace: self._mappings.rename(renames) return self else: result = self.copy() result._mappings.rename(renames) return result def head(self, n): result = self.copy() result._operations.head(self._index, n) return result def tail(self, n): result = self.copy() result._operations.tail(self._index, n) return result def sample(self, n=None, frac=None, random_state=None): result = self.copy() if n is None and frac is None: n = 1 elif n is None and frac is not None: index_length = self._index_count() n = int(round(frac * index_length)) if n < 0: raise ValueError( "A negative number of rows requested. Please provide positive value." ) result._operations.sample(self._index, n, random_state) return result def es_match( self, text: str, columns: Sequence[str], *, match_phrase: bool = False, match_only_text_fields: bool = True, multi_match_type: Optional[str] = None, analyzer: Optional[str] = None, fuzziness: Optional[Union[int, str]] = None, **kwargs: Any, ) -> QueryFilter: if len(columns) < 1: raise ValueError("columns can't be empty") es_dtypes = self.es_dtypes.to_dict() # Build the base options for the 'match_*' query options = {"query": text} if analyzer is not None: options["analyzer"] = analyzer if fuzziness is not None: options["fuzziness"] = fuzziness options.update(kwargs) # Warn the user if they're not querying text columns if match_only_text_fields: non_text_columns = {} for column in columns: # Don't worry about wildcards if "*" in column: continue es_dtype = es_dtypes[column] if es_dtype != "text": non_text_columns[column] = es_dtype if non_text_columns: raise ValueError( f"Attempting to run es_match() on non-text fields " f"({', '.join([k + '=' + v for k, v in non_text_columns.items()])}) " f"means that these fields may not be analyzed properly. " f"Consider reindexing these fields as text or use 'match_only_text_es_dtypes=False' " f"to use match anyways") else: options.setdefault("lenient", True) # If only one column use 'match' # otherwise use 'multi_match' with 'fields' if len(columns) == 1: if multi_match_type is not None: raise ValueError("multi_match_type parameter only valid " "when searching more than one column") query = { "match_phrase" if match_phrase else "match": { columns[0]: options } } else: options["fields"] = columns if match_phrase: if multi_match_type not in ("phrase", None): raise ValueError( f"match_phrase=True and multi_match_type={multi_match_type!r} " f"are not compatible. Must be multi_match_type='phrase'" ) multi_match_type = "phrase" if multi_match_type is not None: options["type"] = multi_match_type query = {"multi_match": options} return QueryFilter(query) def es_query(self, query): return self._update_query(QueryFilter(query)) # To/From Pandas def to_pandas(self, show_progress=False): """Converts Eland DataFrame to Pandas DataFrame. Returns: Pandas DataFrame """ return self._operations.to_pandas(self, show_progress) # To CSV def to_csv(self, **kwargs): """Serialises Eland Dataframe to CSV Returns: If path_or_buf is None, returns the resulting csv format as a string. Otherwise returns None. """ return self._operations.to_csv(self, **kwargs) # __getitem__ methods def getitem_column_array(self, key, numeric=False): """Get column data for target labels. Args: key: Target labels by which to retrieve data. numeric: A boolean representing whether or not the key passed in represents the numeric index or the named index. Returns: A new QueryCompiler. """ result = self.copy() if numeric: raise NotImplementedError("Not implemented yet...") result._mappings.display_names = list(key) return result def drop(self, index=None, columns=None): result = self.copy() # Drop gets all columns and removes drops if columns is not None: # columns is a pandas.Index so we can use pandas drop feature new_columns = self.columns.drop(columns) result._mappings.display_names = new_columns.to_list() if index is not None: result._operations.drop_index_values(self, self.index.es_index_field, index) return result def filter( self, items: Optional[Sequence[str]] = None, like: Optional[str] = None, regex: Optional[str] = None, ) -> "QueryCompiler": # field will be es_index_field for DataFrames or the column for Series. # This function is only called for axis='index', # DataFrame.filter(..., axis="columns") calls .drop() result = self.copy() result._operations.filter(self, items=items, like=like, regex=regex) return result def aggs(self, func: List[str], numeric_only: Optional[bool] = None): return self._operations.aggs(self, func, numeric_only=numeric_only) def count(self): return self._operations.count(self) def mean(self, numeric_only: Optional[bool] = None): return self._operations._metric_agg_series(self, ["mean"], numeric_only=numeric_only) def var(self, numeric_only: Optional[bool] = None): return self._operations._metric_agg_series(self, ["var"], numeric_only=numeric_only) def std(self, numeric_only: Optional[bool] = None): return self._operations._metric_agg_series(self, ["std"], numeric_only=numeric_only) def mad(self, numeric_only: Optional[bool] = None): return self._operations._metric_agg_series(self, ["mad"], numeric_only=numeric_only) def median(self, numeric_only: Optional[bool] = None): return self._operations._metric_agg_series(self, ["median"], numeric_only=numeric_only) def sum(self, numeric_only: Optional[bool] = None): return self._operations._metric_agg_series(self, ["sum"], numeric_only=numeric_only) def min(self, numeric_only: Optional[bool] = None): return self._operations._metric_agg_series(self, ["min"], numeric_only=numeric_only) def max(self, numeric_only: Optional[bool] = None): return self._operations._metric_agg_series(self, ["max"], numeric_only=numeric_only) def nunique(self): return self._operations._metric_agg_series(self, ["nunique"], numeric_only=False) def mode( self, es_size: int, numeric_only: bool = False, dropna: bool = True, is_dataframe: bool = True, ) -> Union[pd.DataFrame, pd.Series]: return self._operations.mode( self, pd_aggs=["mode"], numeric_only=numeric_only, dropna=dropna, is_dataframe=is_dataframe, es_size=es_size, ) def aggs_groupby( self, by: List[str], pd_aggs: List[str], dropna: bool = True, is_dataframe_agg: bool = False, numeric_only: Optional[bool] = True, ) -> pd.DataFrame: return self._operations.aggs_groupby( self, by=by, pd_aggs=pd_aggs, dropna=dropna, is_dataframe_agg=is_dataframe_agg, numeric_only=numeric_only, ) def value_counts(self, es_size: int) -> pd.Series: return self._operations.value_counts(self, es_size) def es_info(self, buf): buf.write(f"es_index_pattern: {self._index_pattern}\n") self._index.es_info(buf) self._mappings.es_info(buf) self._operations.es_info(self, buf) def describe(self): return self._operations.describe(self) def _hist(self, num_bins): return self._operations.hist(self, num_bins) def _update_query(self, boolean_filter): result = self.copy() result._operations.update_query(boolean_filter) return result def check_arithmetics(self, right): """ Compare 2 query_compilers to see if arithmetic operations can be performed by the NDFrame object. This does very basic comparisons and ignores some of the complexities of incompatible task lists Raises exception if incompatible Parameters ---------- right: QueryCompiler The query compiler to compare self to Raises ------ TypeError, ValueError If arithmetic operations aren't possible """ if not isinstance(right, QueryCompiler): raise TypeError( f"Incompatible types {type(self)} != {type(right)}") if self._client != right._client: raise ValueError( f"Can not perform arithmetic operations across different clients" f"{self._client} != {right._client}") if self._index.es_index_field != right._index.es_index_field: raise ValueError( f"Can not perform arithmetic operations across different index fields " f"{self._index.es_index_field} != {right._index.es_index_field}" ) if self._index_pattern != right._index_pattern: raise ValueError( f"Can not perform arithmetic operations across different index patterns" f"{self._index_pattern} != {right._index_pattern}") def arithmetic_op_fields(self, display_name, arithmetic_object): result = self.copy() # create a new field name for this display name scripted_field_name = f"script_field_{display_name}" # add scripted field result._mappings.add_scripted_field(scripted_field_name, display_name, arithmetic_object.dtype.name) result._operations.arithmetic_op_fields(scripted_field_name, arithmetic_object) return result def get_arithmetic_op_fields(self) -> Optional["ArithmeticOpFieldsTask"]: return self._operations.get_arithmetic_op_fields() def display_name_to_aggregatable_name(self, display_name: str) -> str: aggregatable_field_name = self._mappings.aggregatable_field_name( display_name) return aggregatable_field_name
def test_percentiles_none(): es_aggs = Operations._map_pd_aggs_to_es_aggs(["count", "min", "quantile"]) assert es_aggs == ["value_count", "min", ("percentiles", (50.0, ))]