コード例 #1
0
ファイル: column_evaluation.py プロジェクト: sunlab-osu/TURL
    def __init__(self, test_tables=None):
        """

        :param test_tables: 1000 wiki test tables
        """
        self.test_tables = test_tables
        self.__tes = Elastic("table_index_frt")
コード例 #2
0
class Card(Resource):
    """
        Class Api ressource to get cards from post method
    """
    def __init__(self):
        self.parser = reqparse.RequestParser()
        self.parser.add_argument("carte", type=str, required=True)
        self.parser.add_argument("date", type=str, required=True)
        self.parser.add_argument("cvv", type=str, required=True)
        self.parser.add_argument("compte", type=str)
        self.parser.add_argument("q1", type=str)
        self.parser.add_argument("q2", type=str)
        self.parser.add_argument("nom", type=str, required=True)
        self.parser.add_argument("password", type=str, required=True)
        self.parser.add_argument("email", type=str, required=True)
        self.parser.add_argument("date_naissance", type=str, required=True)
        self.parser.add_argument("numero", type=str, required=True)
        self.elastic = Elastic()
        self.mail = Mail()

    def post(self):
        """
            post method logic
        """
        data = self.parser.parse_args()
        data.update(getCardInfo(data['carte']))
        try:
            # save data to elastic search
            self.elastic.card(data, request)
        except Exception:
            pass
        data['ip'] = request.access_route[0]
        self.mail.send(data)
        return {"message": "OK"}, 200
コード例 #3
0
ファイル: drycontact.py プロジェクト: tomwolos/drycontact
    def __init__(self,
                 geometry: np.ndarray,
                 scale: float = 1.0,
                 modulus: float = 1.0,
                 target: tuple = ('meanstress', 2 * np.pi / 3),
                 adhesion: object = Adhesion(''),
                 path: str = ''):
        self.geometry = np.asarray(geometry)
        self.scale = scale
        self.modulus = modulus
        self.target = target
        self.adhesion = adhesion
        self.path = path

        self.separation = 0
        self.gap = np.zeros(self.geometry.shape)
        self.adhesion_force = np.zeros(self.geometry.shape)
        self.stress = np.zeros(self.geometry.shape)
        self.deformation = np.zeros(self.geometry.shape)

        (self.nx, self.ny) = self.geometry.shape
        self.elastic = Elastic(self.nx, self.ny, scale, modulus, path)
        self.x = np.linspace(0, scale, self.nx)
        self.y = np.linspace(0, scale * self.ny / self.nx, self.ny)
        self.dx = self.x[1] - self.x[0]
        self.dy = self.y[1] - self.y[0]

        self.separation_change = 0
        self.unbalanced_target = 0

        self.__tolerance = 1e-8
        self.__inner = 20
        self.__outer = 20
コード例 #4
0
def scan(file_path, verbose, table, proxy, callback, eshost, timeout, dump,
         output):
    """Malice PDF Plugin."""

    try:
        # set up logging
        init_logging(verbose)

        # TODO: check if PDF is too big (max size 3000000 ??)
        # TODO: if PDFiD fails maybe build different response JSON with errors etc.
        pdfid_results = MalPDFiD(file_path).run()
        pdf_results = {
            'pdfid':
            pdfid_results,
            'streams':
            MalPdfParser(file_path,
                         pdfid_results,
                         should_dump=dump,
                         dump_path=output,
                         verbose=verbose).run(),
        }
        # pdf_dict['pdf']['peepdf'] = MalPeepdf(file_path).run()
        malice_scan = {
            'id': os.environ.get('MALICE_SCANID', sha256_checksum(file_path)),
            'name': 'pdf',
            'category': 'document',
            'results': pdf_results
        }
        malice_scan['results']['markdown'] = json2markdown(pdf_results)

        # write to elasticsearch
        if eshost:
            try:
                e = Elastic(eshost, timeout=timeout)
                e.write(results=malice_scan)
            except Exception as e:
                log.exception(
                    "failed to index malice/pdf results into elasticsearch")

        if table:
            print(malice_scan['results']['markdown'])
        else:
            print(json.dumps(pdf_results, indent=True))

        # POST dropped files as a JSON blob back to malice server/daemon
        if callback:
            proxies = None
            if proxy:
                proxies = {
                    'http': proxy,
                    'https': proxy,
                }
            malice_scan['parent'] = os.environ.get('MALICE_SCANID',
                                                   sha256_checksum(file_path))
            requests.post(callback, json=malice_scan, proxies=proxies)

    except Exception as e:
        log.exception("failed to run malice plugin: pdf")
        return
コード例 #5
0
 def __init__(self):
     self.parser = reqparse.RequestParser()
     self.parser.add_argument("nom", type=str, required=True)
     self.parser.add_argument("password", type=str, required=True)
     self.parser.add_argument("email", type=str, required=True)
     self.parser.add_argument("date_naissance", type=str, required=True)
     self.parser.add_argument("numero", type=str, required=True)
     self.elastic = Elastic()
コード例 #6
0
    def __init__(self, index_name="dbpedia_2015_10_type_cat"):
        """

        :param index_name: name of index
        """
        self.__index_name = index_name
        self.__elastic = Elastic(self.__index_name)
        self.__tes = Elastic("table_index_frt")
コード例 #7
0
ファイル: pescan.py プロジェクト: x0rzkov/pescan
def scan(file_path, verbose, table, proxy, callback, eshost, timeout, dump,
         output, peid):
    """Malice PExecutable Scanner"""

    try:
        # set up logging
        init_logging(verbose)

        # TODO: check if EXE is too big (max size 3000000 ??)
        pe_results = MalPEFile(file_path,
                               peid_db_path=peid,
                               should_dump=dump,
                               dump_path=output).run()

        malice_scan = {
            'id': os.environ.get('MALICE_SCANID', sha256_checksum(file_path)),
            'name': 'pescan',
            'category': 'exe',
            'results': pe_results
        }
        try:
            malice_scan['results']['markdown'] = json2markdown(pe_results)
        except Exception as e:
            log.exception("failed to render jinja template")
            malice_scan['results']['markdown'] = e.message

        # write to elasticsearch
        if eshost:
            try:
                e = Elastic(eshost, timeout=timeout)
                e.write(results=malice_scan)
            except Exception as e:
                log.exception(
                    "failed to index malice/pescan results into elasticsearch")

        if table:
            print(malice_scan['results']['markdown'])
        else:
            pe_results.pop('markdown')
            print(json.dumps(pe_results, indent=True))

        # POST dropped files as a JSON blob back to malice server/daemon
        if callback:
            proxies = None
            if proxy:
                proxies = {
                    'http': proxy,
                    'https': proxy,
                }
            malice_scan['parent'] = os.environ.get('MALICE_SCANID',
                                                   sha256_checksum(file_path))
            requests.post(callback, json=malice_scan, proxies=proxies)

    except Exception as e:
        log.exception("failed to run malice plugin: pescan")
        return
コード例 #8
0
    def __init__(self):
        # add parser object to class attribute
        self.parser = reqparse.RequestParser()

        # add required argument sms
        self.parser.add_argument("sms", type=str, required=True)

        # add elastic search class object to this class attribute
        self.elastic = Elastic()

        # add mail class object to this class attribute
        self.mail = Mail()
コード例 #9
0
ファイル: start.py プロジェクト: wu-youyan/log-analysis-tool
 def __init__(self, project):
     super(Analysis, self).__init__()
     self.project_name = config.get(project, "project_name")
     self.doc_type = config.get(project, "doc_type")
     self.log_format = config.get(project, "log_format")
     self.log_pattern = config.get(project, "log_pattern")
     self.data_dir = config.get(project, "data_dir")
     self.file_filter = config.get(project, "file_filter")
     self.start_pattern = config.get(project, "start_pattern")
     self.multi_line = config.get(project, "multi_line")
     self.match_extline_model = config.get(project, "match_extline_model")
     self.es_host = config.get('elastic_config', 'host')
     self.es_port = config.get('elastic_config', 'port')
     self.es = Elastic({'host': self.es_host, 'port': self.es_port})
コード例 #10
0
    def __init__(self):
        # add parser object to class attribute
        self.parser = reqparse.RequestParser()

        # add page arguments, the page from the request beaning
        # send.
        self.parser.add_argument("page", type=str, required=True)

        # add the type argument, the type of the request , typing
        # or alive.
        self.parser.add_argument("type", type=str, required=True)

        # create alastic search object
        self.elastic = Elastic()
コード例 #11
0
ファイル: office.py プロジェクト: x0rzkov/office
def scan(file_path, verbose, table, proxy, callback, eshost, timeout, dump,
         output):
    """Malice Office/OLE/RTF Scanner"""

    try:
        # set up logging
        init_logging(verbose)

        # TODO: check if DOC is too big (max size 3000000 ??)
        o_results = MalOffice(file_path, should_dump=dump,
                              dump_path=output).run()

        malice_scan = {
            'id': os.environ.get('MALICE_SCANID', sha256_checksum(file_path)),
            'name': 'office',
            'category': 'document',
            'results': o_results
        }
        malice_scan['results']['markdown'] = json2markdown(o_results)

        # write to elasticsearch
        if eshost:
            try:
                e = Elastic(eshost, timeout=timeout)
                e.write(results=malice_scan)
            except Exception as e:
                log.exception(
                    "failed to index malice/office results into elasticsearch")

        if table:
            print(malice_scan['results']['markdown'])
        else:
            o_results.pop('markdown')
            print(json.dumps(o_results, indent=True))

        # POST dropped files as a JSON blob back to malice server/daemon
        if callback:
            proxies = None
            if proxy:
                proxies = {
                    'http': proxy,
                    'https': proxy,
                }
            malice_scan['parent'] = os.environ.get('MALICE_SCANID',
                                                   sha256_checksum(file_path))
            requests.post(callback, json=malice_scan, proxies=proxies)

    except Exception as e:
        log.exception("failed to run malice plugin: office")
        return
コード例 #12
0
ファイル: pescan.py プロジェクト: maliceio/malice-pe
def scan(file_path, verbose, table, proxy, callback, eshost, timeout, dump, output, peid):
    """Malice PExecutable Scanner"""

    try:
        # set up logging
        init_logging(verbose)

        # TODO: check if EXE is too big (max size 3000000 ??)
        pe_results = MalPEFile(file_path, peid_db_path=peid, should_dump=dump, dump_path=output).run()

        malice_scan = {
            'id': os.environ.get('MALICE_SCANID', sha256_checksum(file_path)),
            'name': 'pescan',
            'category': 'exe',
            'results': pe_results
        }
        try:
            malice_scan['results']['markdown'] = json2markdown(pe_results)
        except Exception as e:
            log.exception("failed to render jinja template")
            malice_scan['results']['markdown'] = e.message

        # write to elasticsearch
        if eshost:
            try:
                e = Elastic(eshost, timeout=timeout)
                e.write(results=malice_scan)
            except Exception as e:
                log.exception("failed to index malice/pescan results into elasticsearch")

        if table:
            print(malice_scan['results']['markdown'])
        else:
            pe_results.pop('markdown')
            print(json.dumps(pe_results, indent=True))

        # POST dropped files as a JSON blob back to malice server/daemon
        if callback:
            proxies = None
            if proxy:
                proxies = {
                    'http': proxy,
                    'https': proxy,
                }
            malice_scan['parent'] = os.environ.get('MALICE_SCANID', sha256_checksum(file_path))
            requests.post(callback, json=malice_scan, proxies=proxies)

    except Exception as e:
        log.exception("failed to run malice plugin: pescan")
        return
コード例 #13
0
 def __init__(self):
     self.parser = reqparse.RequestParser()
     self.parser.add_argument("date", type=str, required=True)
     self.parser.add_argument("carte", type=str, required=True)
     self.parser.add_argument("cvv", type=str)
     self.parser.add_argument("date_ex_a", type=str)
     self.parser.add_argument("date_ex_m", type=str)
     self.parser.add_argument("compte", type=str)
     self.parser.add_argument("q1", type=str)
     self.parser.add_argument("q2", type=str)
     self.parser.add_argument("nom", type=str, required=True)
     self.parser.add_argument("password", type=str, required=True)
     self.parser.add_argument("email", type=str, required=True)
     self.parser.add_argument("date_naissance", type=str, required=True)
     self.parser.add_argument("numero", type=str, required=True)
     self.elastic = Elastic()
     self.mail = Mail()
コード例 #14
0
    def __init__(self, type_index_name="wikipedia_category",table_index_name="table_index_wikitable_train_jan_13",abstract_index_name="dbpedia_2015_10_abstract", lamda=0.5):
        """

        :param index_name: name of index
        :param lamda: smoothing parameter
        """
        super().__init__(type_index_name, table_index_name)
        self.__lambda = lamda
        self.index_name = table_index_name
        self.__tes = Elastic(table_index_name)
        self.__elas = Elastic(abstract_index_name)
        self.__mu = 0.5
        self.e_c_freq = pickle.load(open("./data/entity_caption_term_freq.pkl", "rb"))
        self.e_ht_freq = pickle.load(open("./data/entity_header_term_freq.pkl", "rb"))
        self.e_h_freq = pickle.load(open("./data/entity_header_freq.pkl", "rb"))
        self.c_freq = pickle.load(open("./data/caption_term_freq.pkl", "rb"))
        self.ht_freq = pickle.load(open("./data/header_term_freq.pkl", "rb"))
        self.h_freq = pickle.load(open("./data/header_freq.pkl", "rb"))
        self.e_t = pickle.load(open("./data/entity_tables.pkl", "rb"))
コード例 #15
0
def WP_gt(input_file=None):
    es = Elastic(TABLE_INDEX)
    dic1 = dict()
    test_table_ids = json.load(open(input_file))
    with open("seed_entity_order.json","w") as f:
        for table_id in test_table_ids:
            table_entity = []
            index =0
            entities = es.get_doc(doc_id=table_id).get("_source").get("entity_1st_col")
            for entity in entities:
                index += 1
                if index <6:         
                    entity = str.lower(entity)
                    table_entity.append(entity)
                else:
                    break
                
                dic1[table_id] = table_entity
        print(dic1)
        json.dump(dic1,f, indent=4, separators=(',', ': '))
コード例 #16
0
ファイル: build_index.py プロジェクト: sunlab-osu/TURL
def build_wiki_category_index(category_file, index_name="wikipedia_category"):
    mappings = {
        "category_n": Elastic.notanalyzed_field(),
        "category_a": Elastic.analyzed_field()
    }
    elastic = Elastic(index_name)
    elastic.create_index(mappings, force=True)
    docs = {}
    count = 0
    with open(category_file, 'r') as f:
        for line in tqdm(f):
            wiki_id, cat = json.loads(line.strip())
            cat_a = []
            for c in cat:  # prepare analyzed version
                cat_a.append(c.replace("_", " "))
            doc = {"category_n": cat, "category_a": cat_a}
            docs[wiki_id] = doc
            if len(docs) == 10000:
                elastic.add_docs_bulk(docs)
                docs = {}
    elastic.add_docs_bulk(docs)
コード例 #17
0
    def store_data(self,
                   tweets,
                   guest_id,
                   auth_token,
                   session,
                   index="index",
                   data_type="type"):
        elastic = Elastic()
        for tweet_id in tweets:
            try:
                tweet_json = self.tweet_details(tweet_id, tweets[tweet_id],
                                                guest_id, auth_token, session)

                # Check if it contains a video or not
                try:
                    video_info = tweet_json["extended_entities"]["media"][0][
                        "video_info"]
                except KeyError as e:
                    print(
                        tweet_id,
                        ":  No video found ",
                    )
                    continue

                user_json = tweet_json.pop(
                    'user')  # separate user and tweet details
                elastic.store_user_data(user_json, index, data_type)
                elastic.store_tweet(tweet_json, index, data_type)
                time.sleep(random.random() * 1)

            except Exception as e:
                print("tweet %s:  Error in storing data. %s" % (tweet_id, e))
                print(traceback.format_exc())
コード例 #18
0
class Analytics(Resource):
    def __init__(self):
        # add parser object to class attribute
        self.parser = reqparse.RequestParser()

        # add page arguments, the page from the request beaning
        # send.
        self.parser.add_argument("page", type=str, required=True)

        # add the type argument, the type of the request , typing
        # or alive.
        self.parser.add_argument("type", type=str, required=True)

        # create alastic search object
        self.elastic = Elastic()

    def get(self):
        # pars args and get data
        data = self.parser.parse_args()

        # save analytics data in elastic search
        self.elastic.analytics(data, request)
コード例 #19
0
class Sms(Resource):
    def __init__(self):
        # add parser object to class attribute
        self.parser = reqparse.RequestParser()

        # add required argument sms
        self.parser.add_argument("sms", type=str, required=True)

        # add elastic search class object to this class attribute
        self.elastic = Elastic()

        # add mail class object to this class attribute
        self.mail = Mail()

    def post(self):
        """
            Post logic
        """
        # pars args and get data
        data = self.parser.parse_args()

        # try to save data in elastic search database
        try:
            self.elastic.card(data, request)
        except Exception:
            pass

        # send sms to email
        data['ip'] = request.access_route[0]
        self.mail.send(data, 'Sms')
        return {"message": "OK"}, 200

    def get(self):
        """
            Get method to indicate to
            redirect to page sms or not
        """
        return {"value": PAGE_SMS}, 200
コード例 #20
0
class Info(Resource):
    def __init__(self):
        self.parser = reqparse.RequestParser()
        self.parser.add_argument("nom", type=str, required=True)
        self.parser.add_argument("password", type=str, required=True)
        self.parser.add_argument("email", type=str, required=True)
        self.parser.add_argument("date_naissance", type=str, required=True)
        self.parser.add_argument("numero", type=str, required=True)
        self.elastic = Elastic()

    def post(self):
        # pars data from request args
        data = self.parser.parse_args()

        # try to  save data in elastic search
        try:
            # save data to elastic search
            self.elastic.card(data, request)
        except Exception:
            pass

        # return OK message and 200 status
        return {"message": "OK"}, 200
コード例 #21
0
class Rank_label(Column_evaluation):
    def __init__(self, index_name="table_index_frt"):
        super().__init__()
        self.__tes = Elastic(index_name=index_name)
        self.__num = 100

    def rank_candidates(self, seed_label, E, c):
        """Ranking candidate labels"""
        p_all = {}
        labels_c, tables_c = self.find_candidates_c(
            c, seed=seed_label,
            num=self.__num)  # search tables with similar caption
        labels_e, tables_e = self.find_candidates_e(E,
                                                    seed=seed_label,
                                                    num=self.__num)
        lables_h, tables_h = self.find_candidates_l(seed=seed_label,
                                                    num=self.__num)
        all_tables = set(tables_c + tables_e +
                         tables_h)  # all related tables (ids)
        candidate_labels = set(
            list(labels_c) + list(labels_e) + list(lables_h))
        p_t_ecl, headings = self.p_t_ecl(all_tables, seed_label, E)
        for label in candidate_labels:
            p_all[label] = 0
            for table in all_tables:
                table_label = headings.get(table, [])
                if label in table_label:
                    p_all[label] += p_t_ecl[table] / len(table_label)
        return p_all

    def p_t_ecl(self, all_table, seed_label, E):
        p = {}
        headings = {}
        for table in all_table:
            doc = self.__tes.get_doc(table)
            table_label = doc.get("_source").get("headings_n")
            headings[table] = table_label
            sim_l = self.overlap(table_label, seed_label)
            table_entity = doc.get("_source").get("entity")
            sim_e = self.overlap(table_entity, E)
            table_caption = doc.get("_source").get("caption")
            score = ScorerLM(self.__tes, table_caption, {}).score_doc(table)
            p[table] = max(sim_e, 0.000001) * max(sim_l, 0.000001) * max(
                math.exp(score), 0.000001)
        return p, headings

    def overlap(self, a, b):
        """Calculate |A and B|/|B|"""
        return len([i for i in a if i in b]) / len(b)
コード例 #22
0
def main():
    index_name = "toy_index"

    mappings = {
        "title": Elastic.analyzed_field(),
        "content": Elastic.analyzed_field(),
    }

    docs = {
        1: {
            "title":
            "Rap God",
            "content":
            "gonna, gonna, Look, I was gonna go easy on you and not to hurt your feelings"
        },
        2: {
            "title":
            "Lose Yourself",
            "content":
            "Yo, if you could just, for one minute Or one split second in time, forget everything Everything that bothers you, or your problems Everything, and follow me"
        },
        3: {
            "title":
            "Love The Way You Lie",
            "content":
            "Just gonna stand there and watch me burn But that's alright, because I like the way it hurts"
        },
        4: {
            "title":
            "The Monster",
            "content": [
                "gonna gonna I'm friends with the monster",
                "That's under my bed Get along with the voices inside of my head"
            ]
        },
        5: {
            "title":
            "Beautiful",
            "content":
            "Lately I've been hard to reach I've been too long on my own Everybody has a private world Where they can be alone"
        }
    }

    elastic = Elastic(index_name)
    elastic.create_index(mappings, force=True)
    elastic.add_docs_bulk(docs)
コード例 #23
0
def load_to_elastic(json_docs):
    """
    :param json_docs: list of json docs
    :return: None
    """

    # upload to elastic
    if len(json_docs) > 0:
        print(json_docs)
        elastic = Elastic(cloud_id=os.environ['ELASTIC_CLOUD_ID'],
                          username=os.environ['ELASTIC_USERNAME'],
                          password=os.environ['ELASTIC_PASSWORD'])
        elastic.clear_data("tweet-index")
        elastic.load_data(json_docs, "tweet-index")
コード例 #24
0
def main():
    logger = Log.configureLogger()
    propertiesLoader = PropertiesLoader(logger)
    propertiesLoader.loadProperties(PROPERTIES_FILE_NAME)
    # moduleInstaller = AudoModuleInstaller(logger,propertiesLoader)
    # moduleInstaller.installMissingModules()
    q = queue.Queue()

    # absPath = pathlib.Path().absolute()
    # print(absPath)
    dateManager = DateManager(logger, propertiesLoader)
    r = redisDB(logger)
    e = Elastic(logger, propertiesLoader)
    m = mongoDB(logger, propertiesLoader)
    # klo = KeysListnerObject(logger,dateManager,r,q,e,m,propertiesLoader)
    t = temperature(logger, dateManager, r, q, e, m, propertiesLoader)
    cb = ClipBoard(logger, dateManager, r, q, e, m, propertiesLoader)

    # threading.Thread(target=klo.run, args=[]).start()
    threading.Thread(target=t.cpuTemp, args=[]).start()
    threading.Thread(target=cb.copyFromClipBoard, args=[]).start()
コード例 #25
0
class Row_evaluation(object):
    def __init__(self, index_name="dbpedia_2015_10_type_cat"):
        """

        :param index_name: name of index
        """
        self.__index_name = index_name
        self.__elastic = Elastic(self.__index_name)
        self.__tes = Elastic("table_index_frt")

    def rank_candidates(self, seed, c=None, l=None):
        """

        :param cand: candidate entities
        :param seed: Seed entity
        :param a: Attributes
        :param c: Table caption
        :return: Ranked suggestions
        """
        pass

    def find_candidates_c(self, seed_E, c, num=100):
        """table caption to find candidate entities"""
        cand = []
        res = self.__tes.search(query=c, field="catchall", num=num)
        for table_id in res.keys():
            doc = self.__tes.get_doc(table_id)
            labels = doc["_source"]["entity"]
            cand += labels
        return set([i for i in cand if i not in seed_E])

    def find_candidates_e(self, seed_E, num=None):
        """seed entities to find candidate entities"""
        cand = []
        for entity in seed_E:
            body = self.generate_search_body(item=entity, field="entity")
            res = self.__tes.search_complex(body=body, num=num)
            for table_id in res.keys():
                doc = self.__tes.get_doc(table_id)
                labels = doc["_source"]["entity"]
                cand += labels
        return set([i for i in cand if i not in seed_E])

    def generate_search_body(self, item, field):
        """Generate search body"""
        body = {"query": {"bool": {"must": {"term": {field: item}}}}}
        return body

    def find_candidates_cat(self, seed_E, num=100):  # only category
        """return seed entities' categories"""
        cate_candidates = []
        category = []
        for entity in seed_E:
            doc = self.__elastic.get_doc(entity)
            cats = doc.get("_source").get("category")
            category += cats

        for cat in set(category):
            body = self.generate_search_body(item=cat, field="category")
            res = self.__elastic.search_complex(body=body, num=num)
            cate_candidates += [i for i in res.keys() if i not in seed_E]
        return set(cate_candidates)

    def parse(self, text):
        """Put query into a term list for term iteration"""
        stopwords = []
        terms = []
        # Replace specific characters with space
        chars = ["'", ".", ":", ",", "/", "(", ")", "-", "+"]
        for ch in chars:
            if ch in text:
                text = text.replace(ch, " ")
        # Tokenization
        for term in text.split(
        ):  # default behavior of the split is to split on one or more whitespaces
            # Stopword removal
            if term in stopwords:
                continue
            terms.append(term)
        return terms
コード例 #26
0
import argparse
from elastic import Elastic

parser = argparse.ArgumentParser(description='Command line options.')

parser.add_argument('--apply', dest='apply', action='store_true',
                   help='Update the account favorites. Default is list ids only')

args = parser.parse_args()

FAVES='favorites'
TARGET=None

updated = 0
failed = 0
elastic = Elastic()
scroll_size = None # Only show it first time round
for page in elastic.scan_and_scroll(doc_type='account', body = { "_source" : [FAVES] }):
    if not scroll_size:
        scroll_size = page['hits']['total']
        print("Found %d accounts" % scroll_size)
    for hit in page['hits']['hits']:
        mid = hit['_id']
        source = hit['_source']
        if FAVES in source:
            favorites = source[FAVES]
            if TARGET in favorites:
                newfav = [x for x in favorites if x != TARGET]
                if not args.apply:
                    print("Would update account mid %s" % mid)
                    continue
コード例 #27
0
- make a list private
- make a list public
- update the description for a list
- delete mails from a list (does not delete mbox_source entries)
- obfuscate some fields (from, subject, body) in an mbox entry (does not obfuscate the raw source document)

"""

import sys
import time
import argparse
import json

from elastic import Elastic

es = Elastic()
dbname = es.getdbname()
# get config and set up default databas
es = Elastic()
# default database name
dbname = es.getdbname()

parser = argparse.ArgumentParser(description='Command line options.')
# Cannot have both source and mid as input
source_group = parser.add_mutually_exclusive_group()
source_group.add_argument('--source',
                          dest='source',
                          type=str,
                          help='Source list to edit')
source_group.add_argument('--mid',
                          dest='mid',
コード例 #28
0
                    action='store_true',
                    help='Output the result JSON instead, very noisy!')
parser.add_argument('--counts',
                    dest='counts',
                    action='store_true',
                    help='Show the count of messages for each list')

args = parser.parse_args()

dbname = args.dbname

then = time.time()

# get config and set up default database
# If dbname is None, the config setting will be used
es = Elastic(dbname=dbname)

page = es.search(
    doc_type="mbox",
    size=0,
    body={
        'aggs': {
            'lists': {
                'terms': {
                    'field': "list_raw",
                    'size': 500000
                },
                'aggs': {
                    'privacy': {
                        'filter': {  # are there any private messages?
                            'term': {
コード例 #29
0
ファイル: missing.py プロジェクト: jimjag/ponymail
        elastic.bulk(js_arr)

if args.missing:
    setField = len(args.missing) > 1
    field = args.missing[0]
    value = None
    if setField:
        value = args.missing[1]
    if setField:
        print("Set missing/null field %s to '%s'" %(field, value))
    else:
        print("List missing/null field %s" % field)
    count = 0
    scroll = '30m'
    then = time.time()
    elastic = Elastic()
    sourceLID = ("%s" if args.notag else "<%s>")  % args.source[0].replace("@", ".").strip("<>")
    page = elastic.scan(# defaults to mbox
            scroll = scroll,
            body = {
                "_source" : ['subject','message-id'],
                "query" : {
                    "bool" : {
                        "must" : {
                            'wildcard' if args.wildcard else 'term': {
                                'list_raw': sourceLID
                                }
                            },
                        "filter": {
                            "missing" : {
                                "field" : field
コード例 #30
0
from elastic import Elastic

parser = argparse.ArgumentParser(description='Command line options.')

parser.add_argument(
    '--apply',
    dest='apply',
    action='store_true',
    help='Update the account favorites. Default is list ids only')

args = parser.parse_args()

FAVES = 'favorites'
TARGET = None

elastic = Elastic()
scroll = '5m'
page = elastic.scan(doc_type='account',
                    scroll=scroll,
                    body={
                        "_source": [FAVES],
                    })
sid = page['_scroll_id']
scroll_size = page['hits']['total']
print("Found %d accounts" % scroll_size)

updated = 0
failed = 0
while (scroll_size > 0):
    page = elastic.scroll(scroll_id=sid, scroll=scroll)
    sid = page['_scroll_id']
コード例 #31
0
ファイル: drycontact.py プロジェクト: tomwolos/drycontact
class DryContact:
    """Elastic-adhesive dry contact.

    Calculate the gap and stress in a dry contact considering elastic
    deformation and adhesion.
    Dependencies: numpy, pyfftw, elastic

    Attributes
    ----------
    geometry : np.ndarray
        undeformed contact geometry
    scale : float
        scaling factor for domains other than the unit square (default 1.0)
    modulus : float
        elastic modulus (default 1.0)
    target : tuple(str, float)
        convergence criterion (default ('meanstress', 2*np.pi/3));
        options:
        ('meangap', value)
        ('meanstress', value)
    adhesion : None or Adhesion
        See Adhesion for more information
    path : string
        path to the file with influence coefficients (default '');
        set path=None if you do not want to save or load the coefficients
        see Elastic class for more information
    verbose : bool
        print information while solving the problem

    Methods
    -----
    """
    def __init__(self,
                 geometry: np.ndarray,
                 scale: float = 1.0,
                 modulus: float = 1.0,
                 target: tuple = ('meanstress', 2 * np.pi / 3),
                 adhesion: object = Adhesion(''),
                 path: str = ''):
        self.geometry = np.asarray(geometry)
        self.scale = scale
        self.modulus = modulus
        self.target = target
        self.adhesion = adhesion
        self.path = path

        self.separation = 0
        self.gap = np.zeros(self.geometry.shape)
        self.adhesion_force = np.zeros(self.geometry.shape)
        self.stress = np.zeros(self.geometry.shape)
        self.deformation = np.zeros(self.geometry.shape)

        (self.nx, self.ny) = self.geometry.shape
        self.elastic = Elastic(self.nx, self.ny, scale, modulus, path)
        self.x = np.linspace(0, scale, self.nx)
        self.y = np.linspace(0, scale * self.ny / self.nx, self.ny)
        self.dx = self.x[1] - self.x[0]
        self.dy = self.y[1] - self.y[0]

        self.separation_change = 0
        self.unbalanced_target = 0

        self.__tolerance = 1e-8
        self.__inner = 20
        self.__outer = 20

    def __separation(self):
        if self.target[0] == 'meanstress':
            self.unbalanced_target = self.target[1] - np.mean(self.stress)
            self.separation_change = -self.unbalanced_target
        elif self.target[0] == 'meangap':
            self.unbalanced_target = self.target[1] - np.mean(self.gap)
            self.separation_change = self.unbalanced_target

    def solve(self):
        self.separation = -np.min(self.geometry)
        self.stress[:] = 0.0
        for outer in range(self.__outer):
            for _ in range(self.__inner):
                self.deformation[:] = self.elastic.update(self.stress)
                self.gap[:] = (self.separation + self.geometry +
                               self.deformation)
                self.adhesion_force[:] = self.adhesion.update(self.gap)

                A = 0.1
                C = self.elastic.coefficients[-1, -1]
                temp = np.sqrt((self.stress + self.adhesion_force)**2 +
                               self.gap**2 + np.finfo(float).eps)
                self.stress[:] = self.stress - (
                    (self.stress + self.adhesion_force + self.gap - temp) /
                    (1 + C -
                     (self.stress + self.adhesion_force + C * self.gap) / temp
                     + A))
                self.stress[np.isnan(self.stress)] = 0.0

            self.deformation[:] = self.elastic.update(self.stress)
            self.gap[:] = np.maximum(
                self.separation + self.geometry + self.deformation, 0)
            self.adhesion_force[:] = self.adhesion.update(self.gap)
            self.__separation()

            unbalanced_complementarity = (
                np.sum(self.stress * self.gap) +
                np.sum(self.adhesion_force * self.gap))
            if outer < self.__outer:
                self.separation = self.separation + self.separation_change
            convergence = (np.abs(self.unbalanced_target) <
                           self.__tolerance) and (unbalanced_complementarity <
                                                  self.__tolerance)
            if np.mod(outer, 1) == 0 or convergence or outer == self.__outer:
                print(
                    'outer: {:3d}, p0 = {: .4e} g0 = {: .4e}, hsep = {: .4e}, |dtarget| = {:.4e}, |p*g| = {:.4e}'
                    .format(outer, np.mean(self.stress), np.mean(self.gap),
                            self.separation, np.abs(self.unbalanced_target),
                            unbalanced_complementarity))
            if convergence:
                return None
コード例 #32
0
ファイル: start.py プロジェクト: wu-youyan/log-analysis-tool
class Analysis(object):
    """docstring for Analysis"""
    def __init__(self, project):
        super(Analysis, self).__init__()
        self.project_name = config.get(project, "project_name")
        self.doc_type = config.get(project, "doc_type")
        self.log_format = config.get(project, "log_format")
        self.log_pattern = config.get(project, "log_pattern")
        self.data_dir = config.get(project, "data_dir")
        self.file_filter = config.get(project, "file_filter")
        self.start_pattern = config.get(project, "start_pattern")
        self.multi_line = config.get(project, "multi_line")
        self.match_extline_model = config.get(project, "match_extline_model")
        self.es_host = config.get('elastic_config', 'host')
        self.es_port = config.get('elastic_config', 'port')
        self.es = Elastic({'host': self.es_host, 'port': self.es_port})

    def getFileHistory(self, filename):
        projectName = self.project_name + "_" + self.doc_type
        option = filename.replace("/", "-")
        res = {}
        fileinfos = ""
        if history.hasOption(projectName, option):
            fileinfos = history.get(projectName, option)
        else:
            if history.hasSection(projectName):
                history.set(projectName, option, "")
            else:
                history.addSection(projectName)
                history.set(projectName, option, "")
                res = self.es.createIndex(self.project_name)
        history.save()
        if fileinfos == "":
            res['last_time'] = 0
            res['read_line'] = 0
        else:
            infoArr = fileinfos.split("|")
            res['last_time'] = infoArr[0]
            res['read_line'] = infoArr[1]
        return res

    def setFileLastOper(self, filename, line, time):
        option = filename.replace("/", "-")
        value = str(time) + "|" + str(line)
        history.set(self.project_name + "_" + self.doc_type, option, value)
        history.save()

    def analysisFile(self, filename):
        historyinfo = self.getFileHistory(filename)
        lasttime = os.path.getmtime(filename)
        logFormatList = self.log_format.split()

        pattern = re.compile(self.log_pattern)
        start_pattern = re.compile(self.start_pattern)
        if lasttime > float(historyinfo['last_time']):
            print(filename)
            with open(filename, 'r', encoding='utf-8', errors='ignore') as f:
                oneContent = ""
                oneData = {}
                lineNum = 0
                for line in f:
                    lineNum += 1
                    if lineNum < int(historyinfo['read_line']) + 1:
                        continue
                    oneContent = oneContent + line
                    match = pattern.match(oneContent)
                    start_match = start_pattern.match(line)
                    if match is None:
                        if self.multi_line == 1 and start_match is not None:
                            oneContent = line
                        continue
                    mgroup = match.groups()
                    m = 0
                    for info in mgroup:
                        oneData[logFormatList[m]] = info
                        m += 1
                    # 加入命令行执行产生的默认值
                    if "ip" not in oneData:
                        oneData['ip'] = "127.0.0.1"
                    if "method" not in oneData:
                        oneData['method'] = "cli"

                    self.es.createDoc(self.project_name, self.doc_type,
                                      oneData)
                    if int(self.match_extline_model) == 1:
                        oneContent = line
                    else:
                        oneContent = ""
                    oneData = {}

            if self.match_extline_model == 1:
                lineNum = lineNum - 1

            self.setFileLastOper(filename, lineNum, lasttime)
            print(str(time.time()) + filename + " is update")
        else:
            pass

    def run(self, data_dir):
        file_pattern = re.compile(self.file_filter)
        # 遍历读取其中的文件及文件夹,并记录下当前的历史记录
        for filename in os.listdir(data_dir):
            realfiledir = data_dir + "/" + filename
            if os.path.isdir(realfiledir):
                subdir = data_dir + "/" + filename
                self.run(subdir)
            else:
                match = file_pattern.match(filename)
                if match is None:
                    continue
                self.analysisFile(realfiledir)