コード例 #1
0
    def test_poisson(self):

        # Check the output types for input rate + n number of neurons
        pp = stgen._n_poisson(rate=self.rate, t_stop=self.t_stop, n=self.n)
        self.assertIsInstance(pp, list)
        self.assertIsInstance(pp[0], neo.core.spiketrain.SpikeTrain)
        self.assertEqual(pp[0].simplified.units, 1000*ms)
        self.assertEqual(len(pp), self.n)

        # Check the output types for input list of rates
        pp = stgen._n_poisson(rate=self.rates, t_stop=self.t_stop)
        self.assertIsInstance(pp, list)
        self.assertIsInstance(pp[0], neo.core.spiketrain.SpikeTrain)
        self.assertEqual(pp[0].simplified.units, 1000*ms)
        self.assertEqual(len(pp), self.n)
コード例 #2
0
    def test_poisson(self):

        # Check the output types for input rate + n number of neurons
        pp = stgen._n_poisson(rate=self.rate, t_stop=self.t_stop, n=self.n)
        self.assertIsInstance(pp, list)
        self.assertIsInstance(pp[0], neo.core.spiketrain.SpikeTrain)
        self.assertEqual(pp[0].simplified.units, 1000 * ms)
        self.assertEqual(len(pp), self.n)

        # Check the output types for input list of rates
        pp = stgen._n_poisson(rate=self.rates, t_stop=self.t_stop)
        self.assertIsInstance(pp, list)
        self.assertIsInstance(pp[0], neo.core.spiketrain.SpikeTrain)
        self.assertEqual(pp[0].simplified.units, 1000 * ms)
        self.assertEqual(len(pp), self.n)
コード例 #3
0
def generate_sts(data_type, N=100):
    '''
    Generate a list of parallel spike trains with different statistics.

    The data are composed of background spiking activity plus possibly
    a repeated sequence of synchronous events (SSE).
    The background activity depends on the value of data_type.
    The size and occurrence count of the SSE is specified by sse_params.

    Parameters
    ----------
    data_type : int
        An integer specifying the type of background activity.
        At the moment the following types of background activity are
        supported (note: homog = across neurons; stat = over time):
        0 : 100 indep Poisson with rate 25 Hz
        1: 100 indep Poisson nonstat-step (10/60/10 Hz)
        2: 100 indep Poisson heterog (5->25 Hz), stat
        3 : 100 indep Poisson, rate increase with latency variability
    N: int 
        total number of neurons in the model. The default is N=100.
    Output
    ------
    sts : list of SpikeTrains
        a list of spike trains
    params : dict
        a dictionary of simulation parameters

    '''
    T = 1 * pq.s  # simulation time
    sampl_period = 10 * pq.ms  # sampling period of the rate profile
    params = {'nr_neurons': N, 'simul_time': T}
    # Indep Poisson homog, stat rate 25 Hz
    if data_type == 0:
        # Define a rate profile
        rate = 25 * pq.Hz
        # Generate data
        sts = stg._n_poisson(rate=rate, t_stop=T, n=N)
        # Storing rate parameter
        params['rate'] = rate
    # Indep Poisson,  homog, nonstat-step (10/60/10 Hz)
    elif data_type == 1:
        a0, a1 = 10 * pq.Hz, 60 * pq.Hz  # baseline and transient rates
        t1, t2 = 600 * pq.ms, 700 * pq.ms  # time segment of transient rate
        # Define a rate profile
        times = sampl_period.units * np.arange(
            0,
            T.rescale(sampl_period.units).magnitude, sampl_period.magnitude)
        rate_profile = np.zeros(times.shape)
        rate_profile[np.any([times < t1, times > t2], axis=0)] = a0.magnitude
        rate_profile[np.all([times >= t1, times <= t2], axis=0)] = a1.magnitude
        rate_profile = rate_profile * a0.units
        rate_profile = neo.AnalogSignal(rate_profile,
                                        sampling_period=sampl_period)
        # Generate data
        sts = [
            stg.inhomogeneous_poisson_process(rate_profile) for i in range(N)
        ]
        # Storing rate parameter
        params['rate'] = rate_profile
    # Indep Poisson, heterog (5->15 Hz), stat
    elif data_type == 2:
        rate_min = 5 * pq.Hz  # min rate. Ensures that there is >=1 spike
        rate_max = 25 * pq.Hz  # max rate
        rates = np.linspace(rate_min.magnitude, rate_max.magnitude, N) * pq.Hz
        # Define a rate profile
        # Generate data
        sts = [
            stg.homogeneous_poisson_process(rate=rate, t_stop=T)
            for rate in rates
        ]
        random.shuffle(sts)
        # Storing rate parameter
        params['rate'] = rates
    # Indep Poisson, rate increase sequence
    elif data_type == 3:
        l = 20  # 20 groups of neurons
        w = 5  # of 5 neurons each
        t0 = 50 * pq.ms  # the first of which increases the rate at time t0
        t00 = 500 * pq.ms  # and again at time t00
        ratechange_dur = 5 * pq.ms  # old: 10ms  # for a short period
        a0, a1 = 14 * pq.Hz, 100 * pq.Hz  # from rate a0 to a1
        ratechange_delay = 5 * pq.ms  # old: 10ms; followed with delay by next group
        # Define a rate profile
        times = sampl_period.units * np.arange(
            0,
            T.rescale(sampl_period.units).magnitude, sampl_period.magnitude)
        sts = []
        rate_profiles = []
        for i in range(l * w):
            t1 = t0 + (i // w) * ratechange_delay
            t2 = t1 + ratechange_dur
            t11 = t00 + (i // w) * ratechange_delay
            t22 = t11 + ratechange_dur
            rate_profile = np.zeros(times.shape)
            rate_profile[np.any([times < t1, times > t2], axis=0)] = \
                a0.magnitude
            rate_profile[np.all([times >= t1, times <= t2], axis=0)] = \
                a1.magnitude
            rate_profile[np.all([times >= t11, times <= t22], axis=0)] = \
                a1.magnitude
            rate_profile = rate_profile * a0.units
            rate_profile = neo.AnalogSignal(rate_profile,
                                            sampling_period=sampl_period)
            rate_profiles.append(rate_profile)
            # Generate data
            sts.append(stg.inhomogeneous_poisson_process(rate_profile))
        # Storing rate parameter
        params['rate'] = rate_profiles
    else:
        raise ValueError(
            'data_type %d not supported. Provide int from 0 to 10' % data_type)
    return sts, params
コード例 #4
0
    # Computation analytical p-values
    theo_pvalues = []
    for l in lengths:
        num_combination_patt = (math.factorial(n) /
                                math.factorial(n - xi)) * (l)
        theo_pvalues.append(
            binom.sf(occ - 1,
                     (t_stop.simplified.magnitude - l.simplified.magnitude) /
                     binsize.simplified.magnitude, p) * num_combination_patt)

    # Generating the data
    # Fixing the seed
    np.random.seed(0)
    # Generating Independent Background
    background_sts = stg._n_poisson(rate=rate, t_stop=t_stop, n=n)
    # Total number of patterns
    num_neu_patt = len(lengths) * xi
    sts = []
    stps = []
    # Raising errors if the number of neurons is smaller than number
    # of patterns
    if num_neu_patt > n:
        raise ValueError('Number of neurons involved in the patterns is '
                         'larger than total number of patterns')
    for l_idx, l in enumerate(lengths):
        lag_bins = int(l / (xi - 1))
        delays = [i * lag_bins * binsize.magnitude
                  for i in range(1, xi)] * binsize.units
        print(delays)
        # Generating patterns