コード例 #1
0
 def get_option_spec(cls):
     spec = PyOptionSpec()
     spec.addStrListOption(
         'additional_labels',
         'add additional labels in the batch; e.g. id, seq, last_terminal',
         [])
     return spec
コード例 #2
0
ファイル: trainer.py プロジェクト: liudengfeng/ELF
    def get_option_spec(cls, name='eval'):
        spec = PyOptionSpec()
        spec.addStrListOption('keys_in_reply', 'keys in reply', [])
        spec.addIntOption('num_minibatch', 'number of minibatches', 5000)
        spec.addStrListOption('parsed_args', 'dummy option', [])

        spec.merge(Stats.get_option_spec(name))

        return spec
コード例 #3
0
ファイル: trainer.py プロジェクト: ARVILab/ELF
    def get_option_spec(cls, name='eval'):
        # print("\u001b[31;1m|py|\u001b[0m\u001b[37m", "Evaluator::", inspect.currentframe().f_code.co_name)
        # print("\u001b[31;1m", os.path.dirname(os.path.abspath(__file__)), " - ", os.path.basename(__file__), "\u001b[0m")

        spec = PyOptionSpec()
        spec.addStrListOption('keys_in_reply', 'keys in reply', [])
        spec.addIntOption('num_minibatch', 'number of minibatches', 5000)
        spec.addStrListOption('parsed_args', 'dummy option', '')

        spec.merge(Stats.get_option_spec(name))

        return spec
コード例 #4
0
ファイル: policy_gradient.py プロジェクト: qucheng/ELF-1
 def get_option_spec(cls):
     spec = PyOptionSpec()
     spec.addFloatOption('entropy_ratio',
                         'the entropy ratio we put on PolicyGradient', 0.01)
     spec.addFloatOption('grad_clip_norm', 'gradient norm clipping', 0.0)
     spec.addFloatOption('min_prob', 'mininal probability used in training',
                         1e-6)
     spec.addFloatOption('ratio_clamp', 'maximum importance sampling ratio',
                         10.0)
     spec.addStrListOption('policy_action_nodes',
                           'the entropy ratio we put on PolicyGradient',
                           ['pi,a'])
     return spec
コード例 #5
0
 def get_option_spec(cls):
     spec = PyOptionSpec()
     test.setSpecOptions(spec.getOptionSpec())
     elf_C.setSpecELFOptions(spec.getOptionSpec())
     spec.addIntOption('gpu', 'GPU id to use', 0)
     spec.addIntOption('freq_update',
                       'How much update before updating the acting model',
                       50)
     spec.addStrOption('distri_mode', 'server or client', "")
     spec.addIntOption('num_recv', '', 2)
     spec.addStrListOption('parsed_args', 'dummy option', [])
     spec.merge(PyOptionSpec.fromClasses((PPO, )))
     return spec
コード例 #6
0
ファイル: sampler.py プロジェクト: xikunlun001/ELF-1
 def get_option_spec(cls):
     spec = PyOptionSpec()
     spec.addStrOption(
         'sample_policy',
         'choices of epsilon-greedy, multinomial, or uniform',
         'epsilon-greedy')
     spec.addBoolOption('store_greedy',
                        ('if enabled, picks maximum-probability action; '
                         'otherwise, sample from distribution'), False)
     spec.addFloatOption('epsilon', 'used in epsilon-greedy', 0.0)
     spec.addStrListOption('sample_nodes', 'nodes to be sampled and saved',
                           ['pi,a'])
     return spec
コード例 #7
0
ファイル: server.py プロジェクト: qucheng/ELF-1
    def get_option_spec(cls):
        spec = PyOptionSpec()
        elf.saveDefaultOptionsToArgs("", spec)
        elf.saveDefaultNetOptionsToArgs("", spec)
        spec.addIntOption(
            'gpu',
            'GPU id to use',
            -1)
        spec.addStrListOption(
            "parsed_args",
            "dummy option",
            [])

        return spec
コード例 #8
0
 def get_option_spec(cls):
     spec = PyOptionSpec()
     elf_C.setSpecELFOptions(spec.getOptionSpec())
     test.setSpecTSOptions(spec.getOptionSpec())
     spec.addIntOption(
         'gpu',
         'GPU id to use',
         0)
     spec.addStrOption(
         'load',
         'Load old model',
         "")
     spec.addStrListOption(
         'parsed_args',
         'dummy option',
         [])
     return spec
コード例 #9
0
ファイル: trainer.py プロジェクト: bearrundr/ELF
    def get_option_spec(cls, name='eval'):
        spec = PyOptionSpec()
        spec.addStrListOption(
            'keys_in_reply',
            'keys in reply',
            [])
        spec.addIntOption(
            'num_minibatch',
            'number of minibatches',
            5000)
        spec.addStrListOption(
            'parsed_args',
            'dummy option',
            '')

        spec.merge(Stats.get_option_spec(name))

        return spec
コード例 #10
0
ファイル: sampler.py プロジェクト: bearrundr/ELF
 def get_option_spec(cls):
     spec = PyOptionSpec()
     spec.addStrOption(
         'sample_policy',
         'choices of epsilon-greedy, multinomial, or uniform',
         'epsilon-greedy')
     spec.addBoolOption(
         'store_greedy',
         ('if enabled, picks maximum-probability action; '
          'otherwise, sample from distribution'),
         False)
     spec.addFloatOption(
         'epsilon',
         'used in epsilon-greedy',
         0.0)
     spec.addStrListOption(
         'sample_nodes',
         'nodes to be sampled and saved',
         ['pi,a'])
     return spec
コード例 #11
0
    def get_option_spec(cls, model_class=None, model_idx=None):
        spec = PyOptionSpec()
        spec.addStrOption('load', 'load model', '')
        spec.addStrListOption(
            'onload',
            ('functions to call after loading. e.g., reset,zero_first_layer. '
             'These functions are specified in the model'), [])
        spec.addStrListOption('omit_keys', 'omitted keys when loading', [])
        spec.addStrListOption('replace_prefix', 'replace prefix', [])
        spec.addIntOption('gpu', 'which GPU to use', -1)
        spec.addBoolOption(
            'check_loaded_options',
            'Toggles consistency check of loaded vs. current model options.',
            True)
        spec.addBoolOption('use_fp16', 'use_fp16', False)
        spec.addFloatOption(
            'load_model_sleep_interval',
            ('If zero, has no effect. If positive, then before loading the '
             'model, we will sleep for an interval of '
             'duration (secs) ~ Uniform[0, load_model_sleep_interval]'), 0.0)

        if model_class is not None and hasattr(model_class, 'get_option_spec'):
            spec.merge(model_class.get_option_spec())

        idx_suffix = '' if model_idx is None else str(model_idx)
        spec.addPrefixSuffixToOptionNames('', idx_suffix)

        return spec
コード例 #12
0
ファイル: policy_gradient.py プロジェクト: bearrundr/ELF
 def get_option_spec(cls):
     spec = PyOptionSpec()
     spec.addFloatOption(
         'entropy_ratio',
         'the entropy ratio we put on PolicyGradient',
         0.01)
     spec.addFloatOption(
         'grad_clip_norm',
         'gradient norm clipping',
         0.0)
     spec.addFloatOption(
         'min_prob',
         'mininal probability used in training',
         1e-6)
     spec.addFloatOption(
         'ratio_clamp',
         'maximum importance sampling ratio',
         10.0)
     spec.addStrListOption(
         'policy_action_nodes',
         'the entropy ratio we put on PolicyGradient',
         ['pi,a'])
     return spec
コード例 #13
0
ファイル: game.py プロジェクト: alatyshe/ELF
    def get_option_spec(cls):
        spec = PyOptionSpec()
        spec.addBoolOption('actor_only', 'TODO: fill this help message in',
                           False)
        spec.addStrListOption(
            'list_files', 'Provide a list of json files for offline training',
            [])
        spec.addIntOption('port', 'TODO: fill this help message in', 5556)
        spec.addStrOption('server_addr', 'TODO: fill this help message in', '')
        spec.addStrOption('server_id', 'TODO: fill this help message in', '')
        spec.addIntOption('q_min_size', 'TODO: fill this help message in', 10)
        spec.addIntOption('q_max_size', 'TODO: fill this help message in',
                          1000)
        spec.addIntOption('num_reader', 'TODO: fill this help message in', 50)
        spec.addIntOption('num_reset_ranking',
                          'TODO: fill this help message in', 5000)
        spec.addIntOption(
            'client_max_delay_sec',
            'Maximum amount of allowed delays in sec. If the client '
            'didn\'t respond after that, we think it is dead.', 1200)
        spec.addBoolOption('verbose', 'TODO: fill this help message in', False)
        spec.addBoolOption('keep_prev_selfplay',
                           'TODO: fill this help message in', False)
        spec.addIntOption(
            'num_games_per_thread',
            ('For offline mode, it is the number of concurrent games per '
             'thread, used to increase diversity of games; for selfplay mode, '
             'it is the number of games played at each thread, and after that '
             'we need to call restartAllGames() to resume.'), -1)
        spec.addIntOption('expected_num_clients', 'Expected number of clients',
                          -1)
        spec.addIntOption('checkers_num_future_actions',
                          'TODO: fill this help message in', 1)
        spec.addStrOption('mode', 'TODO: fill this help message in', 'play')
        spec.addBoolOption('black_use_policy_network_only',
                           'TODO: fill this help message in', False)
        spec.addBoolOption('white_use_policy_network_only',
                           'TODO: fill this help message in', False)
        spec.addBoolOption('use_mcts', 'TODO: fill this help message in',
                           False)
        spec.addBoolOption('use_mcts_ai2', 'TODO: fill this help message in',
                           False)
        spec.addFloatOption(
            'white_puct',
            'PUCT for white when it is > 0.0. If it is -1 then we use'
            'the same puct for both side (specified by mcts_options).'
            'A HACK to use different puct for different model. Should'
            'be replaced by a more systematic approach.', -1.0)
        spec.addIntOption('white_mcts_rollout_per_batch',
                          'white mcts rollout per batch', -1)
        spec.addIntOption('white_mcts_rollout_per_thread',
                          'white mcts rollout per thread', -1)
        spec.addStrOption('dump_record_prefix',
                          'TODO: fill this help message in', '')
        spec.addStrOption('selfplay_records_directory',
                          'TODO: fill this help message in', '')
        spec.addStrOption('eval_records_directory',
                          'TODO: fill this help message in', '')
        spec.addStrOption('records_buffer_directory',
                          'TODO: fill this help message in', '')
        spec.addIntOption('policy_distri_cutoff',
                          'first N moves will be randomly', 0)
        spec.addIntOption('selfplay_timeout_usec',
                          'TODO: fill this help message in', 0)
        spec.addIntOption('gpu', 'TODO: fill this help message in', -1)
        spec.addBoolOption('policy_distri_training_for_all',
                           'TODO: fill this help message in', False)
        spec.addBoolOption('parameter_print',
                           'TODO: fill this help message in', True)
        spec.addIntOption('batchsize', 'batch size', 128)
        spec.addIntOption('batchsize2', 'batch size', -1)
        spec.addIntOption('T', 'number of timesteps', 6)
        spec.addIntOption(
            'selfplay_init_num',
            ('Initial number of selfplay games to generate before training a '
             'new model'), 2000)
        spec.addIntOption(
            'selfplay_update_num',
            ('Additional number of selfplay games to generate after a model '
             'is updated'), 1000)
        spec.addBoolOption('selfplay_async',
                           ('Whether to use async mode in selfplay'), False)
        spec.addIntOption(
            'eval_num_games',
            ('number of evaluation to be performed to decide whether a model '
             'is better than the other'), 400)
        spec.addFloatOption('eval_winrate_thres',
                            'Win rate threshold for evalution', 0.55)
        spec.addIntOption(
            'eval_old_model',
            ('If specified, then we directly switch to evaluation mode '
             'between the loaded model and the old model specified by this '
             'switch'), -1)
        spec.addStrOption(
            'eval_model_pair',
            ('If specified for df_selfplay.py, then the two models will be '
             'evaluated on this client'), '')
        spec.addBoolOption(
            'cheat_eval_new_model_wins_half',
            'When enabled, in evaluation mode, when the game '
            'finishes, the player with the most recent model gets 100% '
            'win rate half of the time.'
            'This is used to test the framework', False)
        spec.addBoolOption(
            'cheat_selfplay_random_result',
            'When enabled, in selfplay mode the result of the game is random'
            'This is used to test the framework', False)
        spec.addBoolOption('human_plays_for_black', '', False)
        spec.addIntOption(
            'suicide_after_n_games',
            'return after n games have finished, -1 means it never ends', -1)

        spec.merge(PyOptionSpec.fromClasses((ContextArgs, MoreLabels)))
        return spec
コード例 #14
0
ファイル: game.py プロジェクト: bearrundr/ELF
    def get_option_spec(cls):
        spec = PyOptionSpec()
        spec.addStrOption(
            'preload_sgf',
            'TODO: fill this help message in',
            '')
        spec.addIntOption(
            'preload_sgf_move_to',
            'TODO: fill this help message in',
            -1)
        spec.addBoolOption(
            'actor_only',
            'TODO: fill this help message in',
            False)
        spec.addStrListOption(
            'list_files',
            'Provide a list of json files for offline training',
            [])
        spec.addIntOption(
            'port',
            'TODO: fill this help message in',
            5556)
        spec.addStrOption(
            'server_addr',
            'TODO: fill this help message in',
            '')
        spec.addStrOption(
            'server_id',
            'TODO: fill this help message in',
            '')
        spec.addIntOption(
            'q_min_size',
            'TODO: fill this help message in',
            10)
        spec.addIntOption(
            'q_max_size',
            'TODO: fill this help message in',
            1000)
        spec.addIntOption(
            'num_reader',
            'TODO: fill this help message in',
            50)
        spec.addIntOption(
            'num_reset_ranking',
            'TODO: fill this help message in',
            5000)
        spec.addIntOption(
            'client_max_delay_sec',
            'Maximum amount of allowed delays in sec. If the client '
            'didn\'t respond after that, we think it is dead.',
            1200)
        spec.addBoolOption(
            'verbose',
            'TODO: fill this help message in',
            False)
        spec.addBoolOption(
            'keep_prev_selfplay',
            'TODO: fill this help message in',
            False)
        spec.addBoolOption(
            'print_result',
            'TODO: fill this help message in',
            False)
        spec.addIntOption(
            'data_aug',
            'specify data augumentation, 0-7, -1 mean random',
            -1)
        spec.addIntOption(
            'ratio_pre_moves',
            ('how many moves to perform in each thread, before we use the '
             'data to train the model'),
            0)
        spec.addFloatOption(
            'start_ratio_pre_moves',
            ('how many moves to perform in each thread, before we use the '
             'first sgf file to train the model'),
            0.5)
        spec.addIntOption(
            'num_games_per_thread',
            ('For offline mode, it is the number of concurrent games per '
             'thread, used to increase diversity of games; for selfplay mode, '
             'it is the number of games played at each thread, and after that '
             'we need to call restartAllGames() to resume.'),
            -1)
        spec.addIntOption(
            'expected_num_clients',
            'Expected number of clients',
            -1
        )
        spec.addIntOption(
            'num_future_actions',
            'TODO: fill this help message in',
            1)
        spec.addIntOption(
            'move_cutoff',
            'Cutoff ply in replay',
            -1)
        spec.addStrOption(
            'mode',
            'TODO: fill this help message in',
            'online')
        spec.addBoolOption(
            'black_use_policy_network_only',
            'TODO: fill this help message in',
            False)
        spec.addBoolOption(
            'white_use_policy_network_only',
            'TODO: fill this help message in',
            False)
        spec.addIntOption(
            'ply_pass_enabled',
            'TODO: fill this help message in',
            0)
        spec.addBoolOption(
            'use_mcts',
            'TODO: fill this help message in',
            False)
        spec.addBoolOption(
            'use_mcts_ai2',
            'TODO: fill this help message in',
            False)
        spec.addFloatOption(
            'white_puct',
            'PUCT for white when it is > 0.0. If it is -1 then we use'
            'the same puct for both side (specified by mcts_options).'
            'A HACK to use different puct for different model. Should'
            'be replaced by a more systematic approach.',
            -1.0)
        spec.addIntOption(
            'white_mcts_rollout_per_batch',
            'white mcts rollout per batch',
            -1)
        spec.addIntOption(
            'white_mcts_rollout_per_thread',
            'white mcts rollout per thread',
            -1)
        spec.addBoolOption(
            'use_df_feature',
            'TODO: fill this help message in',
            False)
        spec.addStrOption(
            'dump_record_prefix',
            'TODO: fill this help message in',
            '')
        spec.addIntOption(
            'policy_distri_cutoff',
            'TODO: fill this help message in',
            0)
        spec.addFloatOption(
            'resign_thres',
            'TODO: fill this help message in',
            0.0)
        spec.addBoolOption(
            'following_pass',
            'TODO: fill this help message in',
            False)
        spec.addIntOption(
            'selfplay_timeout_usec',
            'TODO: fill this help message in',
            0)
        spec.addIntOption(
            'gpu',
            'TODO: fill this help message in',
            -1)
        spec.addBoolOption(
            'policy_distri_training_for_all',
            'TODO: fill this help message in',
            False)
        spec.addBoolOption(
            'parameter_print',
            'TODO: fill this help message in',
            True)
        spec.addIntOption(
            'batchsize',
            'batch size',
            128)
        spec.addIntOption(
            'batchsize2',
            'batch size',
            -1)
        spec.addIntOption(
            'T',
            'number of timesteps',
            6)
        spec.addIntOption(
            'selfplay_init_num',
            ('Initial number of selfplay games to generate before training a '
             'new model'),
            2000)
        spec.addIntOption(
            'selfplay_update_num',
            ('Additional number of selfplay games to generate after a model '
             'is updated'),
            1000)
        spec.addBoolOption(
            'selfplay_async',
            ('Whether to use async mode in selfplay'),
            False)
        spec.addIntOption(
            'eval_num_games',
            ('number of evaluation to be performed to decide whether a model '
             'is better than the other'),
            400)
        spec.addFloatOption(
            'eval_winrate_thres',
            'Win rate threshold for evalution',
            0.55)
        spec.addIntOption(
            'eval_old_model',
            ('If specified, then we directly switch to evaluation mode '
             'between the loaded model and the old model specified by this '
             'switch'),
            -1)
        spec.addStrOption(
            'eval_model_pair',
            ('If specified for df_selfplay.py, then the two models will be '
             'evaluated on this client'),
            '')
        spec.addStrOption(
            'comment',
            'Comment for this run',
            '')
        spec.addBoolOption(
            'cheat_eval_new_model_wins_half',
            'When enabled, in evaluation mode, when the game '
            'finishes, the player with the most recent model gets 100% '
            'win rate half of the time.'
            'This is used to test the framework',
            False)
        spec.addBoolOption(
            'cheat_selfplay_random_result',
            'When enabled, in selfplay mode the result of the game is random'
            'This is used to test the framework',
            False)
        spec.addIntOption(
            'suicide_after_n_games',
            'return after n games have finished, -1 means it never ends',
            -1)

        spec.merge(PyOptionSpec.fromClasses((ContextArgs, MoreLabels)))

        return spec