コード例 #1
0
def test_list_output():
    vsim = elfi.tools.vectorize(lsimulator)
    vsum = elfi.tools.vectorize(lsummary)

    v = vsim(np.array([[.2, .8], [.3, .7]]))
    assert is_array(v)
    assert not isinstance(v[0], list)

    vsim = elfi.tools.vectorize(lsimulator, dtype=False)

    v = vsim(np.array([[.2, .8], [.3, .7]]))
    assert is_array(v)
    assert isinstance(v[0], list)

    obs = lsimulator([.2, .8])

    elfi.new_model()
    p = elfi.Prior('dirichlet', [2, 2])
    sim = elfi.Simulator(vsim, p, observed=obs)
    S = elfi.Summary(vsum, sim)
    d = elfi.Distance('euclidean', S)

    pool = elfi.OutputPool(['sim'])
    rej = elfi.Rejection(d, batch_size=100, pool=pool, output_names=['sim'])
    sample = rej.sample(100, n_sim=1000)
    mean = np.mean(sample.samples['p'], axis=0)

    # Crude test
    assert mean[1] > mean[0]
コード例 #2
0
def test_dict_output():
    vsim = elfi.tools.vectorize(simulator)
    vsum = elfi.tools.vectorize(summary)

    obs = simulator([.2, .8])

    elfi.new_model()
    p = elfi.Prior('dirichlet', [2, 2])
    sim = elfi.Simulator(vsim, p, observed=obs)
    S = elfi.Summary(vsum, sim)
    d = elfi.Distance('euclidean', S)

    pool = elfi.OutputPool(['sim'])
    rej = elfi.Rejection(d, batch_size=100, pool=pool, output_names=['sim'])
    sample = rej.sample(100, n_sim=1000)
    mean = np.mean(sample.samples['p'], axis=0)

    # Crude test
    assert mean[1] > mean[0]
コード例 #3
0
    def __init__(self,
                 simulator,
                 fn_distance,
                 list_ss=None,
                 prepared_ss=None,
                 max_cardinality=4,
                 seed=0):
        """Initialise the summary-statistics selection for the Two Stage Procedure.

        Parameters
        ----------
        simulator : elfi.Node
            Node (often elfi.Simulator) for which the summary statistics will be applied.
            The node is the final node of a coherent ElfiModel (i.e. it has no child nodes).
        fn_distance : str or callable function
            Distance metric, consult the elfi.Distance documentation for calling as a string.
        list_ss : List of callable functions, optional
            List of candidate summary statistics.
        prepared_ss : List of lists of callable functions, optional
            List of prepared combinations of candidate summary statistics.
            No other combinations will be evaluated.
        max_cardinality : int, optional
            Maximum cardinality of a candidate summary-statistics combination.
        seed : int, optional

        """
        if list_ss is None and prepared_ss is None:
            raise ValueError('No summary statistics to assess.')

        self.simulator = simulator
        self.fn_distance = fn_distance
        self.seed = seed
        if prepared_ss is not None:
            self.ss_candidates = prepared_ss
        else:
            self.ss_candidates = self._combine_ss(
                list_ss, max_cardinality=max_cardinality)
        # Initialising an output pool as the rejection sampling will be used several times.
        self.pool = elfi.OutputPool(simulator.name)
コード例 #4
0
ファイル: test_simulation_reuse.py プロジェクト: kskyten/elfi
def test_pool_usage(sleep_model):
    # Add nodes to the pool
    pool = elfi.OutputPool(outputs=sleep_model.parameter_names +
                           ['slept', 'summary', 'd'])

    rej = elfi.Rejection(sleep_model['d'], batch_size=5, pool=pool)
    quantile = .25
    ts = time.time()
    res = rej.sample(5, quantile=quantile)
    td = time.time() - ts
    # Will make 5/.25 = 20 evaluations with mean time of .1 secs, so 2 secs total on
    # average. Allow some slack although still on rare occasions this may fail.
    assert td > 1.2

    # Instantiating new inference with the same pool should be faster because we
    # use the prepopulated pool
    rej = elfi.Rejection(sleep_model['d'], batch_size=5, pool=pool)
    ts = time.time()
    res = rej.sample(5, quantile=quantile)
    td = time.time() - ts
    assert td < 1.2

    # It should work if we remove the simulation, since the Rejection sampling
    # only requires the parameters and the discrepancy
    pool.remove_store('slept')
    rej = elfi.Rejection(sleep_model['d'], batch_size=5, pool=pool)
    ts = time.time()
    res = rej.sample(5, quantile=quantile)
    td = time.time() - ts
    assert td < 1.2

    # It should work even if we remove the discrepancy, since the discrepancy can be recomputed
    # from the stored summary
    pool.remove_store('d')
    rej = elfi.Rejection(sleep_model['d'], batch_size=5, pool=pool)
    ts = time.time()
    res = rej.sample(5, quantile=quantile)
    td = time.time() - ts
    assert td < 1.2
コード例 #5
0
ファイル: gradientNetBolfi.py プロジェクト: benballintyn/stfp
def main():
    global eng
    datadir = Path('/home/ben/phd/stfp/abc_results/gradientNet')

    eng = matlab.engine.start_matlab()

    eng.addpath(eng.genpath('~/phd/stfp/abc_code'))
    eng.addpath(eng.genpath('~/phd/easySim'))

    maxConnProbOB2E_prior = elfi.Prior('uniform', 0, 1)
    maxConnProbOB2I_prior = elfi.Prior('uniform', 0, 1)
    maxConnProbGC2E_prior = elfi.Prior('uniform', 0, 1)
    maxConnProbGC2I_prior = elfi.Prior('uniform', 0, 1)
    sigmaOB2PC_prior = elfi.Prior('uniform', 1e-6, 1000e-6)
    sigmaGC2PC_prior = elfi.Prior('uniform', 1e-6, 1000e-6)

    sim = elfi.Simulator(simulator,
                         maxConnProbOB2E_prior,
                         maxConnProbOB2I_prior,
                         maxConnProbGC2E_prior,
                         maxConnProbGC2I_prior,
                         sigmaOB2PC_prior,
                         sigmaGC2PC_prior,
                         observed=0)

    S = elfi.Summary(score_network, sim)

    d = elfi.Distance('euclidean', S)

    #log_d = elfi.Operation(np.log, d)

    pool = elfi.OutputPool([
        'connProbOB2E_prior', 'connProbOB2I_prior', 'connProbGC2E_prior',
        'connProbGC2I_prior', 'sigmaOB2PC_prior', 'sigmaGC2PC_prior', 'S', 'd'
    ])

    ie_maxConnProbOB2E, ie_maxConnProbOB2I, ie_maxConnProbGC2E, ie_maxConnProbGC2I, ie_sigmaOB2PC, ie_sigmaGC2PC, ie_scores = eng.load_initial_evidence_gradientNet(
        '/home/ben/phd/stfp/abc_results/gradientNet', nargout=7)

    ie_maxConnProbOB2E = np.asarray(ie_maxConnProbOB2E)
    ie_maxConnProbOB2I = np.asarray(ie_maxConnProbOB2I)
    ie_maxConnProbGC2E = np.asarray(ie_maxConnProbGC2E)
    ie_maxConnProbGC2I = np.asarray(ie_maxConnProbGC2I)
    ie_sigmaOB2PC = np.asarray(ie_sigmaOB2PC)
    ie_sigmaGC2PC = np.asarray(ie_sigmaGC2PC)
    ie_scores = np.asarray(ie_scores)

    #ie_log_scores = np.log(ie_scores)

    if not ie_maxConnProbOB2E.any():
        ie = 10
        print('0 prior runs detected')
    else:
        ie = {
            'maxConnProbOB2E_prior': ie_maxConnProbOB2E,
            'maxConnProbOB2I_prior': ie_maxConnProbOB2I,
            'maxConnProbGC2E_prior': ie_maxConnProbGC2E,
            'maxConnProbGC2I_prior': ie_maxConnProbGC2I,
            'sigmaOB2PC_prior': ie_sigmaOB2PC,
            'sigmaGC2PC_prior': ie_sigmaGC2PC,
            'd': ie_scores
        }
        print(
            str(ie_maxConnProbOB2E.size) +
            ' prior runs detected... using as initial evidence')

    bolfi = elfi.BOLFI(d,
                       batch_size=1,
                       initial_evidence=ie,
                       update_interval=1,
                       bounds={
                           'maxConnProbOB2E_prior': (0, 1),
                           'maxConnProbOB2I_prior': (0, 1),
                           'maxConnProbGC2E_prior': (0, 1),
                           'maxConnProbGC2I_prior': (0, 1),
                           'sigmaOB2PC_prior': (1e-6, 1000e-6),
                           'sigmaGC2PC_prior': (1e-6, 1000e-6)
                       },
                       acq_noise_var=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                       pool=pool)

    posterior = bolfi.fit(n_evidence=500)

    with open(datadir / 'bolfi_result.pkl', 'wb') as fname:
        pickle.dump(bolfi, fname)

    #bolfi.plot_state()
    bolfi.plot_discrepancy()
    plt.show(block=True)
コード例 #6
0
               *prior_args,
               m["length"],
               m["recombination_rate"],
               m["mutation_rate"],
               priors,
               name="sim",
               model=m)

elfi.Summary(elfi_sum, m["sim"], name="sum", model=m)
elfi.Summary(elfi_sum_scaler, m["sum"], None,
             name="sum_scaler")  # Placeholder (no scaling yet)
elfi.Distance('euclidean', m["sum_scaler"], name='d', model=m)

# Rejection to "train" sum stat scaler
start_time = time.time()
pool = elfi.OutputPool(['sum'])
rej = elfi.Rejection(m['d'], batch_size=1, seed=1, pool=pool)
rej.sample(train_scaler_n_sim, quantile=1, bar=False)  # Accept all
sum_stats = pool.get_store('sum')
sum_stats = np.array(list(sum_stats.values()))
sum_stats = sum_stats.reshape(-1, sum_stats.shape[2])  # Drop batches axis
scaler = StandardScaler()
scaler.fit(sum_stats)
elapsed_time = time.time() - start_time
logging.info(
    f"{train_scaler_n_sim} simulations to train standard scaler completed in {elapsed_time/60:.2f} minutes"
)

m["sum_scaler"].become(elfi.Summary(elfi_sum_scaler, m["sum"], scaler,
                                    model=m))  # Now carries out scaling
コード例 #7
0
    return score


S = elfi.Summary(get_score, sim)

d = elfi.Distance('euclidean', S)

log_d = elfi.Operation(np.log, d)

ie = {
    'm_prior': np.asarray([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
    's_prior': np.asarray([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
    'log_d': np.asarray([2, 1.6, 1.2, .8, 0, .8, 1.2, 1.6, 2, 2.4])
}

pool = elfi.OutputPool(['m_prior', 's_prior', 'sim', 'S', 'd', 'log_d'])

bolfi = elfi.BOLFI(log_d,
                   batch_size=1,
                   initial_evidence=ie,
                   update_interval=5,
                   bounds={
                       'm_prior': (0, 20),
                       's_prior': (0, 20)
                   },
                   acq_noise_var=[0, 0],
                   pool=pool)

posterior = bolfi.fit(n_evidence=200)

savedir = Path('/home/ben/phd/stfp/abc_results/')
コード例 #8
0
S7 = elfi.Summary(percentile_values,sim,60)
S8 = elfi.Summary(percentile_values,sim,70)
S9 = elfi.Summary(percentile_values,sim,80)
S10 = elfi.Summary(percentile_values,sim,90)
S11 = elfi.Summary(percentile_values,sim,100)

# Distance

d = elfi.Distance('euclidean', S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11)

################################
# BOLFI implementation:

# log_d = elfi.Operation(np.log, sim.model['d'])

output_pool = elfi.OutputPool(outputs=['wee','wei','wie','wii','be','bi','taue','taui','k','IH','psi_sigma','sim','d',
               'S1','S2','S3','S4','S5','S6','S7','S8','S9','S10','S11'])

# pool=output_pool
bolfi = elfi.BOLFI(d, batch_size=1, initial_evidence=4, update_interval=4,
                   bounds={'wee': (10, 30), 'wei': (6, 30), 'wie': (6, 30), 'wii': (0.6, 1.4), 'be':(1,5),
                           'bi':(3,7), 'taue':(11,26.2), 'taui':(5.7,24.5), 'k':(0.5,2.5), 'IH':(1.5,3.5),
                           'psi_sigma':(0.05,0.25)},
                   acq_noise_var=0.1, seed=seed)

# np.save('bolfi_test_23112021_sim_data', bolfi)

post = bolfi.fit(n_evidence=6)

bolfi.plot_discrepancy()

result_BOLFI = bolfi.sample(6)
コード例 #9
0
connProbGC2E_prior = elfi.Prior('uniform',0,.5)
connProbGC2I_prior = elfi.Prior('uniform',0,.5)

sim = elfi.Simulator(simulator,connProbOB2E_prior,connProbOB2I_prior,connProbGC2E_prior,connProbGC2I_prior,observed=0)

def score_network(score):
    return score

S = elfi.Summary(score_network, sim)

d = elfi.Distance('euclidean',S)

#log_d = elfi.Operation(np.log, d)


pool = elfi.OutputPool(['connProbOB2E_prior','connProbOB2I_prior','connProbGC2E_prior','connProbGC2I_prior','S','d','d'])

ie_connProbOB2E,ie_connProbOB2I,ie_connProbGC2E,ie_connProbGC2I,ie_scores = eng.load_initial_evidence_randomNet('/home/ben/phd/stfp/abc_results/randomNet',nargout=5)

ie_connProbOB2E  = np.asarray(ie_connProbOB2E)
ie_connProbOB2I  = np.asarray(ie_connProbOB2I)
ie_connProbGC2E  = np.asarray(ie_connProbGC2E)
ie_connProbGC2I  = np.asarray(ie_connProbGC2I)
ie_scores       = np.asarray(ie_scores)

#ie_log_scores = np.log(ie_scores)

if not ie_connProbOB2E.any():
    ie = 10
    print('0 prior runs detected')
else:
コード例 #10
0
import matplotlib.pyplot as plt
import logging

logging.basicConfig(level=logging.INFO)
plt.ion()
seed = 1
np.random.seed(seed)

import elfi
from elfi.examples import ma2

model = ma2.get_model(seed_obs=seed)

log_d = elfi.Operation(np.log, model['d'])

pool = elfi.OutputPool(['log_d', 't1', 't2'])

bolfi = elfi.BOLFI(log_d,
                   batch_size=1,
                   initial_evidence=20,
                   update_interval=10,
                   bounds={
                       't1': (-2, 2),
                       't2': (-1, 1)
                   },
                   acq_noise_var=[0.1, 0.1],
                   seed=seed,
                   pool=pool)

post = bolfi.fit(n_evidence=200)