def load(self, model_path: str, **kwargs): """ :param model_path: the path to a pre-trained model to be loaded. :type model_path: str """ with open(pkl(model_path), 'rb') as fin: self.key = pickle.load(fin) self.label_map = pickle.load(fin) self.chunking = pickle.load(fin) self.feature_windows = pickle.load(fin) self.input_config = pickle.load(fin) self.output_config = pickle.load(fin) self.fuse_conv_config = pickle.load(fin) self.ngram_conv_config = pickle.load(fin) self.hidden_configs = pickle.load(fin) logging.info('{} is loaded'.format(pkl(model_path))) self.model = CNNModel(input_config=self.input_config, output_config=self.output_config, fuse_conv_config=self.fuse_conv_config, ngram_conv_config=self.ngram_conv_config, hidden_configs=self.hidden_configs) # self.model.load_params(params(model_path), self.ctx) self.model.load_parameters(params(model_path), self.ctx) logging.info('{} is loaded'.format(params(model_path))) logging.info(self.__str__()) return self
def save(self, model_path, **kwargs): """ :param model_path: the filepath where the model is to be saved. :type model_path: str """ with open(pkl(model_path), 'wb') as fout: pickle.dump(self.key, fout) pickle.dump(self.label_map, fout) pickle.dump(self.chunking, fout) pickle.dump(self.rnn_config, fout) pickle.dump(self.output_config, fout) logging.info('{} is saved'.format(pkl(model_path))) self.model.save_parameters(params(model_path)) logging.info('{} is saved'.format(params(model_path)))
def load(self, model_path: str, **kwargs): """ :param model_path: the path to a pre-trained model to be loaded. :type model_path: str """ with open(pkl(model_path), 'rb') as fin: self.key = pickle.load(fin) self.label_map = pickle.load(fin) self.chunking = pickle.load(fin) self.rnn_config = pickle.load(fin) self.output_config = pickle.load(fin) logging.info('{} is loaded'.format(pkl(model_path))) self.model = RNNModel(rnn_config=self.rnn_config, output_config=self.output_config) self.model.load_parameters(params(model_path), self.ctx) # self.model.load_params(params(model_path), self.ctx) logging.info('{} is loaded'.format(params(model_path))) logging.info(self.__str__()) return self