コード例 #1
0
ファイル: stopsignal.py プロジェクト: twiecki/pyemergent
    def plot_GoRTs(self):
        fig = plt.gcf()
        fig.subplots_adjust(bottom=0.2)

        base = np.array([np.mean(subj) for subj in self.GoRT['intact']])

        tags = self.tags[1:]
        for t,tag in enumerate(tags):
            diff_scores = [np.mean(subj) for subj in self.GoRT[tag]]-base
            plt.bar(t-.4, np.mean(diff_scores)*self.ms,
                    yerr=sem(diff_scores)*self.ms, color='.7', label=tag, ecolor='k')

        plt.xticks(range(len(self.names)), self.names) #np.linspace(0.5,len(self.tags),len(self.tags)-.5), self.tags)

        plt.ylabel('GoRT relative to intact (ms)')
        plt.ylim(-20*self.ms,20*self.ms)
        #plt.tick_params(labelsize='medium')
        #plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

        ax = plt.gca()
        fontsize = 13
        for tick in ax.xaxis.get_major_ticks():
            tick.label1.set_fontsize(fontsize)
        for tick in ax.yaxis.get_major_ticks():
            tick.label1.set_fontsize(fontsize)
コード例 #2
0
ファイル: stopsignal.py プロジェクト: twiecki/pyemergent
def calc_cond_mean_std(data, cond, col):
    cond_idx = np.where(cond)[0]
    cond_data = data[cond_idx]
    cond_data_mean = np.mean(cond_data[col], axis=0)
    cond_data_median = np.median(cond_data[col], axis=0)
    cond_data_sem = sem(cond_data[col], axis=0)
    return (cond_data, cond_data_mean, cond_data_median, cond_data_sem)
コード例 #3
0
    def plot_GoRTs(self):
        fig = plt.gcf()
        fig.subplots_adjust(bottom=0.2)

        base = np.array([np.mean(subj) for subj in self.GoRT['intact']])

        tags = self.tags[1:]
        for t,tag in enumerate(tags):
            diff_scores = [np.mean(subj) for subj in self.GoRT[tag]]-base
            plt.bar(t-.4, np.mean(diff_scores)*self.ms,
                    yerr=sem(diff_scores)*self.ms, color='.7', label=tag, ecolor='k')

        plt.xticks(range(len(self.names)), self.names) #np.linspace(0.5,len(self.tags),len(self.tags)-.5), self.tags)

        plt.ylabel('GoRT relative to intact (ms)')
        plt.ylim(-20*self.ms,20*self.ms)
        #plt.tick_params(labelsize='medium')
        #plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

        ax = plt.gca()
        fontsize = 13
        for tick in ax.xaxis.get_major_ticks():
            tick.label1.set_fontsize(fontsize)
        for tick in ax.yaxis.get_major_ticks():
            tick.label1.set_fontsize(fontsize)
コード例 #4
0
def calc_cond_mean_std(data, cond, col):
    cond_idx = np.where(cond)[0]
    cond_data = data[cond_idx]
    cond_data_mean = np.mean(cond_data[col], axis=0)
    cond_data_median = np.median(cond_data[col], axis=0)
    cond_data_sem = sem(cond_data[col], axis=0)
    return (cond_data, cond_data_mean, cond_data_median, cond_data_sem)
コード例 #5
0
    def plot_SSDs(self):
        fig = plt.gcf()
        fig.subplots_adjust(bottom=0.2)

        base = np.array([np.mean(subj) for subj in self.SSD['intact']])

        tags = self.tags[1:]

        for t, tag in enumerate(tags):
            plt.bar(t - .4,
                    np.mean([np.mean(subj)
                             for subj in self.SSD[tag]] - base) * self.ms,
                    yerr=sem([np.mean(subj)
                              for subj in self.SSD[tag]]) * self.ms,
                    color='.7',
                    label=tag,
                    ecolor='k')

        plt.xticks(
            range(len(self.names)), self.names
        )  #np.linspace(0.5,len(self.tags),len(self.tags)-.5), self.tags)

        plt.ylabel('SSD relative to intact (ms)')
        #plt.tick_params(labelsize='medium')
        plt.ylim(-20 * self.ms, 20 * self.ms)

        ax = plt.gca()
        fontsize = 13
        for tick in ax.xaxis.get_major_ticks():
            tick.label1.set_fontsize(fontsize)
        for tick in ax.yaxis.get_major_ticks():
            tick.label1.set_fontsize(fontsize)
コード例 #6
0
ファイル: stopsignal.py プロジェクト: twiecki/pyemergent
    def plot_SSDs(self):
        fig = plt.gcf()
        fig.subplots_adjust(bottom=0.2)

        base = np.array([np.mean(subj) for subj in self.SSD['intact']])

        tags = self.tags[1:]

        for t,tag in enumerate(tags):
            plt.bar(t-.4, np.mean([np.mean(subj) for subj in self.SSD[tag]]-base)*self.ms,
                    yerr=sem([np.mean(subj) for subj in self.SSD[tag]])*self.ms, color='.7', label=tag, ecolor='k')

        plt.xticks(range(len(self.names)), self.names) #np.linspace(0.5,len(self.tags),len(self.tags)-.5), self.tags)

        plt.ylabel('SSD relative to intact (ms)')
        #plt.tick_params(labelsize='medium')
        plt.ylim(-20*self.ms,20*self.ms)

        ax = plt.gca()
        fontsize = 13
        for tick in ax.xaxis.get_major_ticks():
            tick.label1.set_fontsize(fontsize)
        for tick in ax.yaxis.get_major_ticks():
            tick.label1.set_fontsize(fontsize)