コード例 #1
0
ファイル: test_solver.py プロジェクト: emsig/emg3d
def test_current_lr_dir():
    hx = np.ones(4)
    grid = emg3d.TensorMesh([hx, hx, hx], (0, 0, 0))  # Big enough

    # Big enough, no change.
    for lr_dir in range(8):
        assert lr_dir == solver._current_lr_dir(lr_dir, grid)

    # Small in all directions => always 0
    grid = emg3d.TensorMesh([[2, 2], [2, 2], [2, 2]], (0, 0, 0))
    for lr_dir in range(8):
        assert 0 == solver._current_lr_dir(lr_dir, grid)

    # Small in y, z
    grid = emg3d.TensorMesh([hx, [2, 2], [2, 2]], (0, 0, 0))
    for lr_dir in [0, 1]:
        assert lr_dir == solver._current_lr_dir(lr_dir, grid)
    for lr_dir in [2, 3, 4]:
        assert 0 == solver._current_lr_dir(lr_dir, grid)
    for lr_dir in [5, 6, 7]:
        assert 1 == solver._current_lr_dir(lr_dir, grid)

    # Small in z
    grid = emg3d.TensorMesh([hx, hx, [2, 2]], (0, 0, 0))
    for lr_dir in [0, 1, 2, 6]:
        assert lr_dir == solver._current_lr_dir(lr_dir, grid)
    assert 0 == solver._current_lr_dir(3, grid)
    assert 2 == solver._current_lr_dir(4, grid)
    assert 1 == solver._current_lr_dir(5, grid)
    assert 6 == solver._current_lr_dir(7, grid)
コード例 #2
0
    def test_runs_warnings(self):
        # The interpolation happens in maps.interp_spline_3d.
        # Here we just check the 'other' things: warning and errors, and that
        # it is composed correctly.

        # Check cubic spline runs fine (NOT CHECKING ACTUAL VALUES!.
        grid = emg3d.TensorMesh(
            [np.ones(4),
             np.array([1, 2, 3, 1]),
             np.array([2, 1, 1, 1])], [0, 0, 0])
        field = fields.Field(grid)
        field.field = np.ones(
            field.field.size) + 1j * np.ones(field.field.size)

        grid = emg3d.TensorMesh(
            [np.ones(6),
             np.array([1, 1, 2, 3, 1]),
             np.array([1, 2, 1, 1, 1])], [-1, -1, -1])
        efield = fields.Field(grid, frequency=1)
        n = efield.field.size
        efield.field = np.ones(n) + 1j * np.ones(n)

        # Provide wrong rec_loc input:
        with pytest.raises(ValueError, match='`receiver` needs to be in the'):
            fields.get_receiver(efield, (1, 1, 1))
コード例 #3
0
    def test_nearest(self):
        # Assert it is 'nearest' or extrapolate if points are outside.
        tgrid = emg3d.TensorMesh(
                [np.array([1, 1, 1, 1]), np.array([1, 1, 1, 1]),
                 np.array([1, 1, 1, 1])], origin=np.array([0., 0, 0]))
        tmodel = np.ones(tgrid.n_cells).reshape(tgrid.shape_cells, order='F')
        tmodel[:, 0, :] = 2
        t2grid = emg3d.TensorMesh(
                [np.array([1]), np.array([1]), np.array([1])],
                origin=np.array([2, -1, 2]))

        # Nearest with cubic.
        out = maps.interpolate(tgrid, tmodel, t2grid, 'cubic')
        assert_allclose(out, 2.)

        # Same, but with log.
        vlog = maps.interpolate(tgrid, tmodel, t2grid, 'cubic', log=True)
        vlin = maps.interpolate(tgrid, np.log10(tmodel), t2grid, 'cubic')
        assert_allclose(vlog, 10**vlin)

        # Extrapolate with linear.
        out = maps.interpolate(tgrid, tmodel, t2grid, 'linear')
        assert_allclose(out, 3.)

        # Same, but with log.
        vlog = maps.interpolate(tgrid, tmodel, t2grid, 'linear', log=True)
        vlin = maps.interpolate(tgrid, np.log10(tmodel), t2grid, 'linear')
        assert_allclose(vlog, 10**vlin)

        # Assert it is 0 if points are outside.
        out = maps.interpolate(tgrid, tmodel, t2grid, 'cubic', False)
        assert_allclose(out, 0.)
        out = maps.interpolate(tgrid, tmodel, t2grid, 'linear', False)
        assert_allclose(out, 0.)
コード例 #4
0
def test_interp_volume_average(njit):
    if njit:
        interp_volume_average = maps.interp_volume_average
    else:
        interp_volume_average = maps.interp_volume_average.py_func

    # Comparison to alt_version.
    grid_in = emg3d.TensorMesh(
            [np.ones(30), np.ones(20)*5, np.ones(10)*10],
            origin=np.array([0, 0, 0]))
    grid_out = emg3d.TensorMesh(
            [np.arange(7)+1, np.arange(13)+1, np.arange(13)+1],
            origin=np.array([0.5, 3.33, 5]))

    values = np.arange(grid_in.n_cells, dtype=np.float64).reshape(
            grid_in.shape_cells, order='F')

    points = (grid_in.nodes_x, grid_in.nodes_y, grid_in.nodes_z)
    new_points = (grid_out.nodes_x, grid_out.nodes_y, grid_out.nodes_z)

    # Compute volume.
    vol = np.outer(np.outer(
        grid_out.h[0], grid_out.h[1]).ravel('F'), grid_out.h[2])
    vol = vol.ravel('F').reshape(grid_out.shape_cells, order='F')

    # New solution.
    new_values = np.zeros(grid_out.shape_cells, dtype=values.dtype)
    interp_volume_average(*points, values, *new_points, new_values, vol)

    # Old solution.
    new_values_alt = np.zeros(grid_out.shape_cells, dtype=values.dtype)
    alternatives.alt_volume_average(
            *points, values, *new_points, new_values_alt)

    assert_allclose(new_values, new_values_alt)
コード例 #5
0
ファイル: test_solver.py プロジェクト: emsig/emg3d
def test_current_sc_dir():
    hx = np.ones(4)
    grid = emg3d.TensorMesh([hx, hx, hx], (0, 0, 0))  # Big enough

    # Big enough, no change.
    for sc_dir in range(4):
        assert sc_dir == solver._current_sc_dir(sc_dir, grid)

    # Small in all directions => always 0
    grid = emg3d.TensorMesh([[2, 2], [2, 2], [2, 2]], (0, 0, 0))
    for sc_dir in range(4):
        assert 6 == solver._current_sc_dir(sc_dir, grid)

    # Small in y, z
    grid = emg3d.TensorMesh([hx, [2, 2], [2, 2]], (0, 0, 0))
    assert 4 == solver._current_sc_dir(0, grid)
    assert 6 == solver._current_sc_dir(1, grid)
    assert 4 == solver._current_sc_dir(2, grid)
    assert 4 == solver._current_sc_dir(3, grid)

    # Small in x, z
    grid = emg3d.TensorMesh([[2, 2], hx, [2, 2]], (0, 0, 0))
    assert 5 == solver._current_sc_dir(0, grid)
    assert 5 == solver._current_sc_dir(1, grid)
    assert 6 == solver._current_sc_dir(2, grid)
    assert 5 == solver._current_sc_dir(3, grid)
コード例 #6
0
def test_volume_average_weights(njit):
    if njit:
        volume_avg_weights = maps._volume_average_weights
    else:
        volume_avg_weights = maps._volume_average_weights.py_func

    grid_in = emg3d.TensorMesh(
            [np.ones(11), np.ones(10)*2, np.ones(3)*10],
            origin=np.array([0, 0, 0]))
    grid_out = emg3d.TensorMesh(
            [np.arange(4)+1, np.arange(5)+1, np.arange(6)+1],
            origin=np.array([0.5, 3.33, 5]))

    wx, ix_in, ix_out = volume_avg_weights(grid_in.nodes_x, grid_out.nodes_x)
    assert_allclose(wx,
                    [0.5, 0.5, 0.5, 1, 0.5, 0.5, 1, 1, 0.5, 0.5, 1, 1, 1, 0.5])
    assert_allclose(ix_in, [0, 1, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9, 10])
    assert_allclose(ix_out, [0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3])

    wy, iy_in, iy_out = volume_avg_weights(grid_in.nodes_y, grid_out.nodes_y)
    assert_allclose(wy, [0.67, 0.33, 1.67, 0.33, 1.67, 1.33, 0.67, 2.,
                         1.33, 0.67, 2, 2, 0.33])
    assert_allclose(iy_in, [1, 2, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 9])
    assert_allclose(iy_out, [0, 0, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4])

    wz, iz_in, iz_out = volume_avg_weights(grid_in.nodes_z, grid_out.nodes_z)
    assert_allclose(wz, [1, 2, 2, 1, 4, 5, 6])
    assert_allclose(iz_in, [0, 0, 0, 1, 1, 1, 2])
    assert_allclose(iz_out, [0, 1, 2, 2, 3, 4, 5])

    w, inp, out = volume_avg_weights(x_i=np.array([0., 5, 7, 10]),
                                     x_o=np.array([-1., 1, 4, 6, 7, 11]))
    assert_allclose(w, [1, 1, 3, 1, 1, 1, 3, 1])
    assert_allclose(inp, [0, 0, 0, 0, 1, 1, 2, 2])
    assert_allclose(out, [0, 0, 1, 2, 2, 3, 4, 4])
コード例 #7
0
def test_restrict_weights(njit):
    if njit:
        restrict_weights = core.restrict_weights
    else:
        restrict_weights = core.restrict_weights.py_func

    # 1. Simple example following equation 9, [Muld06]_.
    edges = np.array([0., 500, 1200, 2000, 3000])
    width = (edges[1:] - edges[:-1])
    centr = edges[:-1] + width / 2
    c_edges = edges[::2]
    c_width = (c_edges[1:] - c_edges[:-1])
    c_centr = c_edges[:-1] + c_width / 2

    # Result
    wtl = np.array([350 / 250, 250 / 600, 400 / 900])
    wt0 = np.array([1., 1., 1.])
    wtr = np.array([350 / 600, 500 / 900, 400 / 500])

    # Result from implemented function
    wl, w0, wr = restrict_weights(edges, centr, width, c_edges, c_centr,
                                  c_width)

    assert_allclose(wtl, wl)
    assert_allclose(wt0, w0)
    assert_allclose(wtr, wr)

    # 2. Test with stretched grid and compare with alternative formulation

    # Create a highly stretched, non-centered grid
    hx = helpers.widths(2, 2, 200, 1.8)
    hy = helpers.widths(0, 8, 800, 1.2)
    hz = helpers.widths(0, 4, 400, 1.4)
    grid = emg3d.TensorMesh([hx, hy, hz], np.array([-100000, 3000, 100]))

    # Create coarse grid thereof
    ch = [
        np.diff(grid.nodes_x[::2]),
        np.diff(grid.nodes_y[::2]),
        np.diff(grid.nodes_z[::2])
    ]
    cgrid = emg3d.TensorMesh(ch, origin=grid.origin)

    # Compute the weights in a numpy-way, instead of numba-way
    wl, w0, wr = alternatives.alt_restrict_weights(grid.nodes_x,
                                                   grid.cell_centers_x,
                                                   grid.h[0], cgrid.nodes_x,
                                                   cgrid.cell_centers_x,
                                                   cgrid.h[0])

    # Get the implemented numba-result
    wxl, wx0, wxr = restrict_weights(grid.nodes_x, grid.cell_centers_x,
                                     grid.h[0], cgrid.nodes_x,
                                     cgrid.cell_centers_x, cgrid.h[0])

    # Compare
    assert_allclose(wxl, wl)
    assert_allclose(wx0, w0)
    assert_allclose(wxr, wr)
コード例 #8
0
    def test_all_run(self):
        hx = [1, 1, 1, 2, 4, 8]
        grid = emg3d.TensorMesh([hx, hx, hx], (0, 0, 0))
        grid2 = emg3d.TensorMesh([[2, 4, 5], [1, 1], [4, 5]], (0, 1, 0))
        field = emg3d.Field(grid)
        field.fx = np.arange(1, field.fx.size+1).reshape(
                field.fx.shape, order='F')
        model = emg3d.Model(grid, 1, 2, 3)

        model.property_x[1, :, :] = 2
        model.property_x[2, :, :] = 3
        model.property_x[3, :, :] = 4
        model.property_x[4, :, :] = np.arange(1, 37).reshape((6, 6), order='F')
        model.property_x[5, :, :] = 200

        xi = (1, [8, 7, 6, 8, 9], [1])

        # == NEAREST ==
        # property - grid
        _ = maps.interpolate(grid, model.property_x, grid2, method='nearest')
        # field - grid
        _ = maps.interpolate(grid, field.fx, grid2, method='nearest')
        # property - points
        _ = maps.interpolate(grid, model.property_x, xi, method='nearest')
        # field - points
        _ = maps.interpolate(grid, field.fx, xi, method='nearest')

        # == LINEAR ==
        # property - grid
        _ = maps.interpolate(grid, model.property_x, grid2, method='linear')
        # field - grid
        _ = maps.interpolate(grid, field.fx, grid2, method='linear')
        # property - points
        _ = maps.interpolate(grid, model.property_x, xi, method='linear')
        # field - points
        _ = maps.interpolate(grid, field.fx, xi, method='linear')

        # == CUBIC ==
        # property - grid
        _ = maps.interpolate(grid, model.property_x, grid2, method='cubic')
        # field - grid
        _ = maps.interpolate(grid, field.fx, grid2, method='cubic')
        # property - points
        _ = maps.interpolate(grid, model.property_x, xi, method='cubic')
        # field - points
        _ = maps.interpolate(grid, field.fx, xi, method='cubic')

        # == VOLUME ==
        # property - grid
        _ = maps.interpolate(grid, model.property_x, grid2, method='volume')
        # field - grid
        with pytest.raises(ValueError, match="for cell-centered properties"):
            maps.interpolate(grid, field.fx, grid2, method='volume')
        # property - points
        with pytest.raises(ValueError, match="only implemented for TensorM"):
            maps.interpolate(grid, model.property_x, xi, method='volume')
        # field - points
        with pytest.raises(ValueError, match="only implemented for TensorM"):
            maps.interpolate(grid, field.fx, xi, method='volume')
コード例 #9
0
 def test_all_alternatives_mag(self):
     h = np.ones(20) * 20
     grid = emg3d.TensorMesh([h, h, h], (-200, -200, -200))
     h = [2, 1, 1, 2]
     grid = emg3d.TensorMesh([h, h, h], (-3, -3, -3))
     vfield = fields._point_vector_magnetic(grid, (0, 0, 0, 0, 0), None)
     src = emg3d.electrodes.TxMagneticPoint((0, 0, 0, 0, 0))
     sfield = fields.get_source_field(grid, src, frequency=None)
     assert_allclose(sfield.field, vfield.field)
コード例 #10
0
 def test_interpolate_to_grid(self):
     # We only check here that it gives the same as calling the function
     # itself; the rest should be tested in interpolate().
     grid1 = emg3d.TensorMesh(
         [np.ones(8), np.ones(8), np.ones(8)], (0, 0, 0))
     grid2 = emg3d.TensorMesh([[2, 2, 2, 2], [3, 3], [4, 4]], (0, 0, 0))
     ee = fields.Field(grid1)
     ee.field = np.ones(ee.field.size) + 2j * np.ones(ee.field.size)
     e2 = ee.interpolate_to_grid(grid2)
     assert_allclose(e2.field, 1 + 2j)
コード例 #11
0
    def test_decimals(self):
        h1 = [2, 1, 1, 2]
        h2 = [2, 1.04, 1.04, 2]
        grid1 = emg3d.TensorMesh([h1, h1, h1], (-3, -3, -3))
        grid2 = emg3d.TensorMesh([h2, h2, h2], (-3, -3, -3))
        source = np.array([[-0.5, 0, 0], [0.5, 0, 0]])

        sfield1 = fields._dipole_vector(grid1, source)
        sfield2a = fields._dipole_vector(grid2, source, decimals=1)
        sfield2b = fields._dipole_vector(grid2, source)

        assert_allclose(sfield1.fx, sfield2a.fx)
        with pytest.raises(AssertionError, match='Not equal to tolerance'):
            assert_allclose(sfield1.fx, sfield2b.fx)
コード例 #12
0
def test_get_magnetic_field():
    # Check it does still the same (pure regression).
    dat = REGRES['reg_2']
    model = dat['model']
    efield = dat['result']
    hfield = dat['hresult']

    hout = fields.get_magnetic_field(model, efield)
    assert_allclose(hfield.field, hout.field)

    # Add some mu_r - Just 1, to trigger, and compare.
    dat = REGRES['res']
    efield = dat['Fresult']
    model1 = emg3d.Model(**dat['input_model'])
    model2 = emg3d.Model(**dat['input_model'], mu_r=1.)

    hout1 = fields.get_magnetic_field(model1, efield)
    hout2 = fields.get_magnetic_field(model2, efield)
    assert_allclose(hout1.field, hout2.field)

    # Test division by mu_r.
    model3 = emg3d.Model(**dat['input_model'], mu_r=2.)
    hout3 = fields.get_magnetic_field(model3, efield)
    assert_allclose(hout1.field, hout3.field * 2)

    # Comparison to alternative.
    # Using very unrealistic value, unrealistic stretching, to test.
    grid = emg3d.TensorMesh(h=[[1, 100, 25, 33], [1, 1, 33.3, 0.3, 1, 1],
                               [2, 4, 8, 16]],
                            origin=(88, 20, 9))
    model = emg3d.Model(grid, mu_r=np.arange(1, grid.n_cells + 1) / 10)
    new = 10**np.arange(grid.n_edges) - grid.n_edges / 2
    efield = fields.Field(grid, data=new, frequency=np.pi)
    hfield_nb = fields.get_magnetic_field(model, efield)
    hfield_np = alternatives.alt_get_magnetic_field(model, efield)
    assert_allclose(hfield_nb.fx, hfield_np.fx)
    assert_allclose(hfield_nb.fy, hfield_np.fy)
    assert_allclose(hfield_nb.fz, hfield_np.fz)

    # Test using discretize
    if discretize:
        h = np.ones(4)
        grid = emg3d.TensorMesh([h * 200, h * 300, h * 400], (0, 0, 0))
        model = emg3d.Model(grid, property_x=3.24)
        sfield = fields.get_source_field(grid, (350, 550, 750, 30, 30),
                                         frequency=10)
        efield = emg3d.solve(model, sfield, plain=True, verb=0)
        mfield = fields.get_magnetic_field(model, efield).field
        dfield = grid.edge_curl * efield.field / sfield.smu0
        assert_allclose(mfield, dfield)
コード例 #13
0
ファイル: test_solver.py プロジェクト: emsig/emg3d
def test_get_restriction_weights():
    x = [500, 700, 800, 1000]
    cx = [1200, 1800]
    y = [2, 2, 2, 2]
    cy = [4, 4]

    grid = emg3d.TensorMesh([x, y, x], (0, 0, 0))
    cgrid = emg3d.TensorMesh([cx, cy, cx], (0, 0, 0))

    # 1. Simple example following equation 9, [Muld06]_.
    wxl = np.array([350 / 250, 250 / 600, 400 / 900])
    wx0 = np.array([1., 1., 1.])
    wxr = np.array([350 / 600, 500 / 900, 400 / 500])
    wyl = np.array([1, 0.5, 0.5])
    wy0 = np.array([1., 1., 1.])
    wyr = np.array([0.5, 0.5, 1])
    wdl = np.array([0., 0., 0., 0., 0.])  # dummy
    wd0 = np.array([1., 1., 1., 1., 1.])  # dummy
    wdr = np.array([0., 0., 0., 0., 0.])  # dummy

    for i in [0, 5, 6]:
        wx, wy, wz = solver._get_restriction_weights(grid, cgrid, i)

        if i not in [5, 6]:
            assert_allclose(wxl, wx[0])
            assert_allclose(wx0, wx[1])
            assert_allclose(wxr, wx[2])
        else:
            assert_allclose(wdl, wx[0])
            assert_allclose(wd0, wx[1])
            assert_allclose(wdr, wx[2])

        if i != 6:
            assert_allclose(wyl, wy[0])
            assert_allclose(wy0, wy[1])
            assert_allclose(wyr, wy[2])
        else:
            assert_allclose(wdl, wy[0])
            assert_allclose(wd0, wy[1])
            assert_allclose(wdr, wy[2])

        if i != 5:
            assert_allclose(wxl, wz[0])
            assert_allclose(wx0, wz[1])
            assert_allclose(wxr, wz[2])
        else:
            assert_allclose(wdl, wz[0])
            assert_allclose(wd0, wz[1])
            assert_allclose(wdr, wz[2])
コード例 #14
0
ファイル: test_simulations.py プロジェクト: emsig/emg3d
    def test_errors(self):
        mesh = emg3d.TensorMesh([[2, 2], [2, 2], [2, 2]], origin=(-1, -1, -1))
        survey = emg3d.Survey(
            sources=emg3d.TxElectricDipole((-1.5, 0, 0, 0, 0)),
            receivers=emg3d.RxElectricPoint((1.5, 0, 0, 0, 0)),
            frequencies=1.0,
            relative_error=0.01,
        )
        sim_inp = {
            'survey': survey,
            'gridding': 'same',
            'receiver_interpolation': 'linear'
        }

        # Anisotropic models.
        simulation = simulations.Simulation(model=emg3d.Model(mesh, 1, 2, 3),
                                            **sim_inp)
        with pytest.raises(NotImplementedError, match='for isotropic models'):
            simulation.gradient

        # Model with electric permittivity.
        simulation = simulations.Simulation(model=emg3d.Model(mesh,
                                                              epsilon_r=3),
                                            **sim_inp)
        with pytest.raises(NotImplementedError, match='for el. permittivity'):
            simulation.gradient

        # Model with magnetic permeability.
        simulation = simulations.Simulation(model=emg3d.Model(
            mesh, mu_r=np.ones(mesh.shape_cells) * np.pi),
                                            **sim_inp)
        with pytest.raises(NotImplementedError, match='for magn. permeabili'):
            simulation.gradient
コード例 #15
0
    def test_2d_arrays(self):
        hx = [1, 1, 1, 2, 4, 8]
        grid = emg3d.TensorMesh([hx, hx, hx], (0, 0, 0))
        field = emg3d.Field(grid)
        field.fx = np.arange(1, field.fx.size+1).reshape(
                field.fx.shape, order='F')
        model = emg3d.Model(grid, 1, 2, 3)

        model.property_x[1, :, :] = 2
        model.property_x[2, :, :] = 3
        model.property_x[3, :, :] = 4
        model.property_x[4, :, :] = np.arange(1, 37).reshape((6, 6), order='F')
        model.property_x[5, :, :] = 200

        xi = (np.ones((3, 2)), 5, np.ones((3, 2)))

        # == NEAREST ==
        # property - points
        _ = maps.interpolate(grid, model.property_x, xi, method='nearest')
        # field - points
        _ = maps.interpolate(grid, field.fx, xi, method='nearest')

        # == LINEAR ==
        # property - points
        _ = maps.interpolate(grid, model.property_x, xi, method='linear')
        # field - points
        _ = maps.interpolate(grid, field.fx, xi, method='linear')

        # == CUBIC ==
        # property - points
        _ = maps.interpolate(grid, model.property_x, xi, method='cubic')
        # field - points
        _ = maps.interpolate(grid, field.fx, xi, method='cubic')
コード例 #16
0
    def test_basics_diag(self):
        h = [2, 1, 1, 2]
        grid = emg3d.TensorMesh([h, h, h], (-3, -3, -3))

        # Diagonal source in the middle
        source = np.array([[-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]])
        vfield = fields._dipole_vector(grid, source)

        # x: exact in the middle on the two edges
        assert_allclose(vfield.fx[1:-2, 1:-2, 1:-2].ravel(),
                        [0.03125, 0.09375, 0.09375, 0.28125])
        # compare lower-left-front with upper-right-back
        assert_allclose(vfield.fx[1:-2, 1:-2, 1:-2].ravel(),
                        vfield.fx[2:-1, 2:-1, 2:-1].ravel()[::-1])

        # Source is 3D symmetric, compare all fields are the same
        assert_allclose(vfield.fx[1:-2, 1:-2, 1:-2].ravel(),
                        vfield.fy[1:-2, 1:-2, 1:-2].ravel())

        assert_allclose(vfield.fx[1:-2, 1:-2, 1:-2].ravel(),
                        vfield.fz[1:-2, 1:-2, 1:-2].ravel())

        assert_allclose(vfield.fx[2:-1, 2:-1, 2:-1].ravel(),
                        vfield.fy[2:-1, 2:-1, 2:-1].ravel())

        assert_allclose(vfield.fx[2:-1, 2:-1, 2:-1].ravel(),
                        vfield.fz[2:-1, 2:-1, 2:-1].ravel())
コード例 #17
0
ファイル: test_models.py プロジェクト: emsig/emg3d
    def test_broadcasting(self):
        grid = emg3d.TensorMesh(
            [np.ones(4), np.ones(2), np.ones(6)], (0, 0, 0))

        model = models.Model(grid, 1, 1, 1, 1, 1)
        assert_allclose(model.property_x, model.property_y)
        assert_allclose(model.property_x, model.property_z)
        assert_allclose(model.property_x, model.mu_r)
        assert_allclose(model.property_x, model.epsilon_r)

        model.property_x = [[[1.]], [[2.]], [[3.]], [[4.]]]
        assert_allclose(model.property_x[:, 0, 0], [1, 2, 3, 4])

        model.property_y = [[[
            1,
        ], [
            2,
        ]]]
        assert_allclose(model.property_y[0, :, 0], [1, 2])

        model.property_z = [[[1, 2., 3., 4., 5., 6.]]]
        assert_allclose(model.property_z[0, 0, :], [1, 2, 3, 4, 5, 6])

        model.mu_r = 3.33
        assert_allclose(model.mu_r, 3.33)

        data = np.arange(1, 4 * 2 * 6 + 1).reshape((4, 2, 6), order='F')
        model.epsilon_r = data
        assert_allclose(model.epsilon_r, data)
コード例 #18
0
ファイル: test_models.py プロジェクト: emsig/emg3d
    def test_interpolate(self):

        # Create some dummy data
        grid = emg3d.TensorMesh(
            [np.array([2, 2]),
             np.array([4, 4]),
             np.array([5, 5])], np.zeros(3))

        grid2 = emg3d.TensorMesh([np.array(
            [2]), np.array([4]), np.array([5])], np.array([1, 2, 2.5]))

        property_x = helpers.dummy_field(*grid.shape_cells, False)
        property_y = property_x / 2.0
        property_z = property_x * 1.4
        mu_r = property_x * 1.11
        epsilon_r = property_x * 3.33

        model1inp = models.Model(grid, property_x)
        same = model1inp.interpolate_to_grid(model1inp.grid)
        assert model1inp == same

        model1out = model1inp.interpolate_to_grid(grid2)
        assert_allclose(model1out.property_x[0],
                        10**(np.sum(np.log10(model1inp.property_x)) / 8))
        assert model1out.property_y is None
        assert model1out.property_z is None
        assert model1out.epsilon_r is None
        assert model1out.mu_r is None

        model2inp = models.Model(grid,
                                 property_x=property_x,
                                 property_y=property_y,
                                 property_z=property_z,
                                 mu_r=mu_r,
                                 epsilon_r=epsilon_r)

        model2out = model2inp.interpolate_to_grid(grid2)
        assert_allclose(model2out.property_x[0],
                        10**(np.sum(np.log10(model2inp.property_x)) / 8))
        assert_allclose(model2out.property_y[0],
                        10**(np.sum(np.log10(model2inp.property_y)) / 8))
        assert_allclose(model2out.property_z[0],
                        10**(np.sum(np.log10(model2inp.property_z)) / 8))
        assert_allclose(model2out.epsilon_r,
                        10**(np.sum(np.log10(model2inp.epsilon_r)) / 8))
        assert_allclose(model2out.mu_r,
                        10**(np.sum(np.log10(model2inp.mu_r)) / 8))
コード例 #19
0
    def test_warnings(self):
        h = np.ones(4)
        grid = emg3d.TensorMesh([h, h, h], (0, 0, 0))
        source = np.array([[5, 2, 2], [2, 2, 2]])
        with pytest.raises(ValueError, match='Provided source outside grid'):
            fields._dipole_vector(grid, source)

        source = np.array([[2, 2, 2], [2, 2, 2]])
        with pytest.raises(ValueError, match='Provided finite dipole'):
            fields._dipole_vector(grid, source)

        # This is a warning that should never be raised...
        hx, x0 = np.ones(4), -2
        grid = emg3d.TensorMesh([hx, hx, hx], (x0, x0, x0))
        source = np.array([[-2, 2, 0], [0, -2, 0]])
        with pytest.warns(UserWarning, match="Normalizing Source: 1.25000000"):
            fields._dipole_vector(grid, source, 30)
コード例 #20
0
ファイル: test_simulations.py プロジェクト: emsig/emg3d
    def test_rel_abs_rec(self):
        # Sources
        sources = emg3d.surveys.txrx_coordinates_to_dict(
            emg3d.TxElectricDipole, ([0, 100, 200], 0, 0, 0, 0))

        # Abs and rel Receivers
        a_e_rec = emg3d.surveys.txrx_coordinates_to_dict(
            emg3d.RxElectricPoint, (1000 + np.arange(3) * 100, 0, -100, 0, 0))
        r_e_rec = emg3d.surveys.txrx_coordinates_to_dict(emg3d.RxElectricPoint,
                                                         (1000, 0, -100, 0, 0),
                                                         relative=True)
        a_h_rec = emg3d.surveys.txrx_coordinates_to_dict(
            emg3d.RxMagneticPoint, (1000 + np.arange(3) * 100, 0, -100, 0, 0))
        r_h_rec = emg3d.surveys.txrx_coordinates_to_dict(emg3d.RxMagneticPoint,
                                                         (1000, 0, -100, 0, 0),
                                                         relative=True)
        receivers = emg3d.surveys.txrx_lists_to_dict(
            [a_e_rec, r_e_rec, a_h_rec, r_h_rec])

        # Frequencies
        frequencies = (1.0)

        survey = emg3d.Survey(sources,
                              receivers,
                              frequencies,
                              name='TestSurv',
                              noise_floor=1e-15,
                              relative_error=0.05)

        # Create a simple grid and model
        grid = emg3d.TensorMesh(
            [np.ones(32) * 250,
             np.ones(16) * 500,
             np.ones(16) * 500], np.array([-1250, -1250, -2250]))
        model = emg3d.Model(grid, 1)

        # Create a simulation, compute all fields.
        simulation = simulations.Simulation(survey,
                                            model,
                                            name='TestSim',
                                            max_workers=1,
                                            solver_opts={
                                                'maxit': 1,
                                                'verb': 0,
                                                'plain': True
                                            },
                                            gridding='same')

        simulation.compute()

        # Relative receivers must be same as corresponding absolute receivers
        assert_allclose(
            [simulation.data.synthetic[i, i, 0].data for i in range(3)],
            simulation.data.synthetic[:, 3, 0].data)

        assert_allclose(
            [simulation.data.synthetic[i, i + 4, 0].data for i in range(3)],
            simulation.data.synthetic[:, 7, 0].data)
コード例 #21
0
def test_amat_x(njit):
    if njit:
        amat_x = core.amat_x
    else:
        amat_x = core.amat_x.py_func

    # 1. Compare to alternative amat_x

    # Create a grid
    src = [200, 300, -50., 5, 60]
    hx = helpers.widths(8, 4, 100, 1.2)
    hy = np.ones(8) * 800
    hz = np.ones(4) * 500
    grid = emg3d.TensorMesh(h=[hx, hy, hz],
                            origin=np.array(
                                [-hx.sum() / 2, -hy.sum() / 2, -hz.sum() / 2]))

    # Create some resistivity model
    x = np.arange(1, grid.shape_cells[0] + 1) * 2
    y = 1 / np.arange(1, grid.shape_cells[1] + 1)
    z = np.arange(1, grid.shape_cells[2] + 1)[::-1] / 10
    property_x = np.outer(np.outer(x, y), z).ravel()
    freq = 0.319
    model = emg3d.Model(grid=grid,
                        property_x=property_x,
                        property_y=0.8 * property_x,
                        property_z=2 * property_x)

    # Create a source field
    sfield = emg3d.get_source_field(grid=grid, source=src, frequency=freq)

    # Get volume-averaged model parameters.
    vmodel = emg3d.models.VolumeModel(model, sfield)

    # Run two iterations to get a e-field
    efield = emg3d.solve(model=model,
                         sfield=sfield,
                         sslsolver=False,
                         semicoarsening=False,
                         linerelaxation=False,
                         maxit=2,
                         verb=1)

    # amat_x
    rr1 = emg3d.Field(grid)
    amat_x(rr1.fx, rr1.fy, rr1.fz, efield.fx, efield.fy, efield.fz,
           vmodel.eta_x, vmodel.eta_y, vmodel.eta_z, vmodel.zeta, grid.h[0],
           grid.h[1], grid.h[2])

    # amat_x - alternative
    rr2 = emg3d.Field(grid)
    alternatives.alt_amat_x(rr2.fx, rr2.fy, rr2.fz, efield.fx, efield.fy,
                            efield.fz, vmodel.eta_x, vmodel.eta_y,
                            vmodel.eta_z, vmodel.zeta, grid.h[0], grid.h[1],
                            grid.h[2])

    # Check all fields (ex, ey, and ez)
    assert_allclose(-rr1.field, rr2.field, atol=1e-23)
コード例 #22
0
ファイル: test_simulations.py プロジェクト: emsig/emg3d
 def test_grid_provided(self):
     # Check bad grid
     hx = np.ones(17) * 20
     grid = emg3d.TensorMesh([hx, hx, hx], (0, 0, 0))
     with pytest.warns(UserWarning, match='optimal for MG solver. Good n'):
         simulations.Simulation(self.survey,
                                self.model,
                                gridding='input',
                                gridding_opts=grid)
コード例 #23
0
 def test_get_receiver(self):
     # We only check here that it gives the same as calling the function
     # itself; the rest should be tested in get_receiver().
     grid1 = emg3d.TensorMesh(
         [np.ones(8), np.ones(8), np.ones(8)], (0, 0, 0))
     ee = fields.Field(grid1)
     ee.field = np.arange(ee.field.size) + 2j * np.arange(ee.field.size)
     resp = ee.get_receiver((4, 4, 4, 0, 0))
     assert_allclose(resp, 323.5 + 647.0j)
コード例 #24
0
    def test_linear(self):
        igrid = emg3d.TensorMesh(
                [np.array([1, 1]), np.array([1, 1, 1]), np.array([1, 1, 1])],
                [0, -1, -1])
        ogrid = emg3d.TensorMesh(
                [np.array([1]), np.array([1]), np.array([1])],
                [0.5, 0, 0])
        values = np.r_[9*[1.0, ], 9*[2.0, ]].reshape(igrid.shape_cells)

        # Simple, linear example.
        out = maps.interpolate(
                grid=igrid, values=values, xi=ogrid, method='linear')
        assert_allclose(out[0, 0, 0], 1.5)

        # Provide ogrid.gridCC.
        ogrid._gridCC = np.array([[0.5, 0.5, 0.5]])
        out2 = maps.interpolate(igrid, values, ogrid, 'linear')
        assert_allclose(out2[0, 0, 0], 1.5)
コード例 #25
0
ファイル: test_solver.py プロジェクト: emsig/emg3d
    def test_sc_0(self):
        sc = 0

        # Simple test with restriction followed by prolongation.
        src = [150, 150, 150, 0, 45]
        grid = emg3d.TensorMesh(
            [np.ones(4) * 100,
             np.ones(4) * 100,
             np.ones(4) * 100],
            origin=np.zeros(3))

        # Create dummy model and fields, parameters don't matter.
        model = emg3d.Model(grid, 1, 1, 1, 1)
        sfield = emg3d.get_source_field(grid, src, 1)

        # Get volume-averaged model parameters.
        vmodel = emg3d.models.VolumeModel(model, sfield)

        rx = np.arange(sfield.fx.size,
                       dtype=np.complex128).reshape(sfield.fx.shape)
        ry = np.arange(sfield.fy.size,
                       dtype=np.complex128).reshape(sfield.fy.shape)
        rz = np.arange(sfield.fz.size,
                       dtype=np.complex128).reshape(sfield.fz.shape)
        field = np.r_[rx.ravel('F'), ry.ravel('F'), rz.ravel('F')]
        rr = emg3d.Field(grid, field)

        # Restrict it
        cmodel, csfield, cefield = solver.restriction(vmodel,
                                                      sfield,
                                                      rr,
                                                      sc_dir=sc)

        assert_allclose(csfield.fx[:, 1:-1, 1],
                        np.array([[196. + 0.j], [596. + 0.j]]))
        assert_allclose(csfield.fy[1:-1, :, 1],
                        np.array([[356. + 0.j, 436. + 0.j]]))
        assert_allclose(csfield.fz[1:-1, 1:-1, :],
                        np.array([[[388. + 0.j, 404. + 0.j]]]))
        assert cmodel.grid.shape_nodes[0] == cmodel.grid.shape_nodes[1] == 3
        assert cmodel.grid.shape_nodes[2] == 3
        assert cmodel.eta_x[0, 0, 0] / 8. == vmodel.eta_x[0, 0, 0]
        assert np.sum(grid.h[0]) == np.sum(cmodel.grid.h[0])
        assert np.sum(grid.h[1]) == np.sum(cmodel.grid.h[1])
        assert np.sum(grid.h[2]) == np.sum(cmodel.grid.h[2])

        # Add pi to the coarse e-field
        efield = emg3d.Field(grid)
        cefield.field += np.pi

        # Prolong it
        solver.prolongation(efield, cefield, sc_dir=sc)

        assert np.all(efield.fx[:, 1:-1, 1:-1] == np.pi)
        assert np.all(efield.fy[1:-1, :, 1:-1] == np.pi)
        assert np.all(efield.fz[1:-1, 1:-1, :] == np.pi)
コード例 #26
0
def test_source():
    p1 = [[0, 0, 0], [1, 0, 0]]
    strength = np.pi
    freq = 1.234

    s1 = electrodes.Source(strength, coordinates=p1)
    assert s1.strength == strength
    assert s1._prefix == 'So'

    grid = emg3d.TensorMesh([[1, 1], [1, 1], [1, 1]], (0, 0, 0))
    sfield = emg3d.fields.get_source_field(grid, s1, freq)
    assert s1.get_field(grid, freq) == sfield
コード例 #27
0
ファイル: test_solver.py プロジェクト: emsig/emg3d
def test_print_gs_info(capsys):
    var = solver.MGParameters(verb=5,
                              cycle='F',
                              sslsolver=False,
                              linerelaxation=False,
                              semicoarsening=False,
                              shape_cells=(16, 8, 2))

    grid = emg3d.TensorMesh([[1, 1], [1, 1], [1, 1]], (0, 0, 0))
    solver._print_gs_info(var, 1, 2, 3, grid, 0.01, 'test')
    out, _ = capsys.readouterr()
    assert out == "      1 2 3 [  2,   2,   2]: 1.000e-02 test\n"
コード例 #28
0
    def test_basics_xdir_on_x(self):
        h = [2, 1, 1, 2]
        grid = emg3d.TensorMesh([h, h, h], (-3, -3, -3))

        # x-directed source in the middle
        vfield = fields._point_vector(grid, (0, 0, 0, 0, 0))

        # x: exact in the middle on the two edges
        assert_allclose(vfield.fx[1:-1, 2:-2, 2:-2].ravel(), [0.5, 0.5])
        # y: as exact "on" x-grid, falls to the right
        assert_allclose(vfield.fy[1:-1, 2:-1, 2:-2].ravel(), 0)
        # z: as exact "on" x-grid, falls to top
        assert_allclose(vfield.fz[1:-1, 2:-2, 2:-1].ravel(), 0)
コード例 #29
0
    def test_basics_xdir_on_x(self):
        h = [2, 1, 1, 2]
        grid = emg3d.TensorMesh([h, h, h], (-3, -3, -3))

        # x-directed source in the middle
        vfield = fields._point_vector_magnetic(grid, (0, 0, 0, 0, 0), None)

        # x: exact in the middle on the two edges
        assert_allclose(vfield.fx, 0)
        # y: as exact "on" x-grid, falls to the right
        assert_allclose(abs(vfield.fy[2:-2, 1:-1, 1:-1:2]), 0.25)
        # z: as exact "on" x-grid, falls to top
        assert_allclose(abs(vfield.fz[2:-2, 1:-1:2, 1:-1]), 0.25)
コード例 #30
0
ファイル: test_models.py プロジェクト: emsig/emg3d
    def test_equal_mapping(self):

        # Create some dummy data
        grid = emg3d.TensorMesh(
            [np.array([2, 2]),
             np.array([3, 4]),
             np.array([0.5, 2])], np.zeros(3))

        model1 = models.Model(grid)
        model2 = models.Model(grid, mapping='Conductivity')

        check = model1 == model2

        assert check is False