コード例 #1
0
ファイル: emg_clf_test.py プロジェクト: Alvipe/Mumai
nSegments = len(segmented_emg[0][0])
nFeatures = len(feature_list)
feature_matrix = np.zeros((nGestures*nIterations*nSegments,nFeatures*nChannels))
n = 0

for i in range(0,nSignals,nChannels):
    for j in range(nSegments):
        feature_matrix[n] = fex.features((segmented_emg[i][:,j],segmented_emg[i+1][:,j]),feature_list)
        n = n + 1

# Target matrix generation
y = fex.gestures(nIterations*nSegments,nGestures)

# Dimensionality reduction and feature scaling
[X,reductor,scaler] = fex.feature_scaling(feature_matrix, y)

# Split dataset into training and testing datasets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)

# Classifier training
classifier = SVC(kernel='rbf',C=10,gamma=10)
classifier.fit(X_train,y_train)

# Classification
predict = classifier.predict(X_test)
print("Classification accuracy = %0.5f." %(classifier.score(X_test,y_test)))

## Cross validation (optional; takes a lot of time)
#from sklearn.cross_validation import StratifiedShuffleSplit
#from sklearn.grid_search import GridSearchCV
コード例 #2
0
    for j in range(n_segments):
        feature_matrix[n] = fex.features((segmented_emg[i][:,j],
                                          segmented_emg[i+1][:,j],
                                          segmented_emg[i+2][:,j],
                                          segmented_emg[i+3][:,j],
                                          segmented_emg[i+4][:,j],
                                          segmented_emg[i+5][:,j],
                                          segmented_emg[i+6][:,j],
                                          segmented_emg[i+7][:,j]),feature_list)
        n = n + 1

# Target matrix generation
y = fex.generate_target(n_iterations*n_segments,class_labels)

# Dimensionality reduction and feature scaling
[X,reductor,scaler] = fex.feature_scaling(feature_matrix, y)

# Split dataset into training and testing datasets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)

# Classifier training
classifier = SVC(kernel='rbf',C=10,gamma=10)
classifier.fit(X_train,y_train)

# Classification
predict = classifier.predict(X_test)
print("Classification accuracy = %0.5f." %(classifier.score(X_test,y_test)))

## Cross validation (optional; takes a lot of time)
#from sklearn.cross_validation import StratifiedShuffleSplit
#from sklearn.grid_search import GridSearchCV
コード例 #3
0
    for j in range(nSegments):
        feature_matrix[n] = fex.features((emg_seg[i][:,j],emg_seg[i+1][:,j]),feature_list)
        n += 1



from sklearn.svm import SVC
import timeit

target = fex.gestures(nIterations*nSegments,nMotions)

#target = np.concatenate((0*np.ones((128,1)),1*np.ones((128,1)),2*np.ones((128,1)),3*np.ones((128,1)),4*np.ones((128,1))),axis=0).ravel()

tic = timeit.default_timer()

[feat_scaled,reductor,scaler] = fex.feature_scaling(feature_matrix, target)

#svm = SVC(kernel='rbf',C=100,gamma=1) #C=1e5,gamma=1e-23
#svm.fit(feat_scaled, target)

classifier = clf.train(feat_scaled,target)

toc = timeit.default_timer()

print("Feature transformation + training time = %0.5f s." %(toc - tic))

emg_val = []
emg_seg_val = []

for m in range(1,nMotions+1):
    for c in range(1,nChannels+1):
コード例 #4
0
def process_emg(data):

    global count, emg, classifier, class_labels

    if count < 4:
        count += 1
        emg.append(np.array(data[0]))
        emg.append(np.array(data[1]))
    else:
        count = 0

        n_classes = 1
        n_iterations = 1
        n_channels = 8
        #n_signals = 8
        n_signals = n_classes * n_iterations * n_channels
        segmented_emg = list()

        print("EMG: ")
        print(emg)

        # Segmentation
        for n in range(n_signals):
            segmented_emg.append(fex.segmentation(emg[n], n_samples=1))

        # Feature calculation
        feature_list = [
            fex.mav, fex.rms, fex.var, fex.ssi, fex.zc, fex.wl, fex.ssc,
            fex.wamp
        ]

        n_segments = len(segmented_emg[0][0])
        print("\nN_Segments: " + str(n_segments) + "\n")
        n_features = len(feature_list)
        feature_matrix = np.zeros(
            (n_classes * n_iterations * n_segments, n_features * n_channels))
        n = 0

        print("Feature_Matrix_SHAPE: ")
        print(feature_matrix.shape)
        print("")

        print("Segmented_EMG: ")
        print(segmented_emg)
        print("")

        for i in range(0, n_classes):
            for j in range(n_segments):
                #print("i: " + str(i))

                #print("j: " + str(j))
                feature_matrix[n] = fex.features(
                    (segmented_emg[i][:, j], segmented_emg[i + 1][:, j],
                     segmented_emg[i + 2][:, j], segmented_emg[i + 3][:, j],
                     segmented_emg[i + 4][:, j], segmented_emg[i + 5][:, j],
                     segmented_emg[i + 6][:, j], segmented_emg[i + 7][:, j]),
                    feature_list)
                n = n + 1

        # Target matrix generation
        print(feature_matrix)
        print(feature_matrix.shape)

        y = fex.generate_target(n_iterations * n_segments, class_labels)

        print(y)
        print(y.shape)

        # Dimensionality reduction and feature scaling
        [X, reductor, scaler] = fex.feature_scaling(feature_matrix, y)

        # Classification
        print(X)
        print(X.shape)

        predict = classifier.predict(feature_matrix)

        print(predict)
        emg = list()