コード例 #1
0
    def test_interior_pixel_generator(self):
        b = 10  # b := border size
        Z = np.zeros((2, 100, 100), dtype=np.int32)
        for idx, pct in emlib.interior_pixel_generator(Z, b, 30):
            Z[idx[:, 0], idx[:, 1], idx[:, 2]] += 1

        self.assertTrue(np.all(Z[:, b:-b, b:-b] == 1))
        Z[:, b:-b, b:-b] = 0
        self.assertTrue(np.all(Z == 0))

        # Make sure it works with 4d tensors as well
        Z = np.zeros((2, 3, 100, 100), dtype=np.int32)
        for idx, pct in emlib.interior_pixel_generator(Z, b, 30):
            Z[idx[:, 0], :, idx[:, 1], idx[:, 2]] += 1

        self.assertTrue(np.all(Z[:, :, b:-b, b:-b] == 1))
        Z[:, :, b:-b, b:-b] = 0
        self.assertTrue(np.all(Z == 0))
コード例 #2
0
    def test_interior_pixel_generator(self):
        b = 10  # b := border size
        Z = np.zeros((2,100,100), dtype=np.int32)
        for idx, pct  in emlib.interior_pixel_generator(Z,b,30):
            Z[idx[:,0],idx[:,1],idx[:,2]] += 1

        self.assertTrue(np.all(Z[:,b:-b,b:-b]==1))
        Z[:,b:-b,b:-b] = 0
        self.assertTrue(np.all(Z==0))
コード例 #3
0
def _eval_cube(net, X, M, batchDim, bandSpec):
    assert(batchDim[2] == batchDim[3])  # tiles must be square

    # some variables and storage needed in the processing loop below 
    tileRadius = int(batchDim[2]/2)
    Xi = np.zeros(batchDim, dtype=np.float32)
    yDummy = np.zeros((batchDim[0],), dtype=np.float32) 
    cnnTime = 0.0                          # time spent doing core CNN operations
    Yhat = None

    # process the cube
    tic = time.time()
    lastChatter = None
 
    for Idx, pct in emlib.interior_pixel_generator(X, tileRadius, batchDim[0], mask=M):
        # populate the mini-batch buffer
        for jj in range(Idx.shape[0]):
            a = Idx[jj,1] - tileRadius
            b = Idx[jj,1] + tileRadius + 1
            c = Idx[jj,2] - tileRadius
            d = Idx[jj,2] + tileRadius + 1
            Xi[jj, 0, :, :] = X[ Idx[jj,0], a:b, c:d ]

        _tmp = time.time()
        net.set_input_arrays(Xi, yDummy)
        # XXX: could call preprocess() here?
        out = net.forward()
        yiHat = out['prob']
        cnnTime += time.time() - _tmp

        nClasses = yiHat.shape[1]
        if Yhat is None:  # on first iteration, create Yhat with the appropriate shape
            Yhat = -1*np.ones((nClasses, X.shape[0], X.shape[1], X.shape[2]))
            
        # store the per-class probability estimates.
        # Note that on the final iteration, the size of yiHat may not match
        # the remaining space in Yhat (unless we get lucky and the data cube
        # size is a multiple of the mini-batch size).  This is why we slice
        # yijHat before assigning to Yhat.
        for jj in range(nClasses):
            yijHat = np.squeeze(yiHat[:,jj,:,:])   # get slice containing probabilities for class j
            assert(len(yijHat.shape)==1)           # should be a single vector now
            Yhat[jj, Idx[:,0], Idx[:,1], Idx[:,2]] = yijHat[:Idx.shape[0]]

        # provide feedback on progress so far    
        elapsed = (time.time() - tic) / 60.
        if (lastChatter is None) or ((elapsed - lastChatter) > 2):
            lastChatter = elapsed
            print "[deploy]: processed pixel at index %s (%0.2f min elapsed; %0.2f CNN min)" % (str(Idx[-1,:]), elapsed, cnnTime/60.)
            sys.stdout.flush()

    print('[deploy]: Finished processing cube.  Net time was: %0.2f min (%0.2f CNN min)' % (elapsed, cnnTime/60.))

    return Yhat
コード例 #4
0
def _evaluate(model, X, log=None, batchSize=100, evalPct=1.0):
    """Evaluate model on held-out data.

    Returns:
      Prob : a tensor of per-pixel probability estimates with dimensions:
         (#layers, #classes, width, height)

    """
    #----------------------------------------
    # Pre-allocate some variables & storage.
    #----------------------------------------
    nChannels, tileRows, tileCols = model.input_shape[1:4]
    ste = emlib.SimpleTileExtractor(tileRows, X)

    lastChatter = -2
    startTime = time.time()

    # identify subset of volume to evaluate
    Mask = _downsample_mask(X, evalPct)
    if log:
        log.info('after masking, will evaluate %0.2f%% of data' %
                 (100.0 * np.sum(Mask) / Mask.size))

    # Create storage for class probabilities.
    # Note that we store all class probabilities, even if this
    # is a binary classification problem (in which case p(1) = 1 - p(0)).
    # We do this to support multiclass classification seamlessly.
    [numZ, numChan, numRows, numCols] = X.shape
    numClasses = model.output_shape[-1]
    Prob = -1 * np.ones([numZ, numClasses, numRows, numCols], dtype=np.float32)

    #----------------------------------------
    # Loop over mini-batches
    #----------------------------------------
    # note: set tileRadius to 0 so we evaluate whole volume
    it = emlib.interior_pixel_generator(X, 0, batchSize, mask=Mask)

    for mbIdx, (Idx, epochPct) in enumerate(it):
        n = Idx.shape[0]  # may be < batchSize on final iteration
        Xi = ste.extract(Idx)
        prob = model.predict_on_batch(Xi)
        # updated based on Keras API changes
        #Prob[Idx[:,0], :, Idx[:,1], Idx[:,2]] = prob[0][:n,:]
        Prob[Idx[:, 0], :, Idx[:, 1], Idx[:, 2]] = prob[:n, :]

        # notify user re. progress
        elapsed = (time.time() - startTime) / 60.0
        if (lastChatter + 2) < elapsed:
            lastChatter = elapsed
            if log:
                log.info("  last pixel %s (%0.2f%% complete)" %
                         (str(Idx[-1, :]), 100. * epochPct))

    return Prob
コード例 #5
0
ファイル: deploy.py プロジェクト: mjpekala/bio-segmentation
def _evaluate(model, X, log=None, batchSize=100, evalPct=1.0):
    """Evaluate model on held-out data.

    Returns:
      Prob : a tensor of per-pixel probability estimates with dimensions:
         (#layers, #classes, width, height)

    """
    #----------------------------------------
    # Pre-allocate some variables & storage.
    #----------------------------------------
    nChannels, tileRows, tileCols = model.input_shape[1:4]
    ste = emlib.SimpleTileExtractor(tileRows, X)

    lastChatter = -2
    startTime = time.time()

    # identify subset of volume to evaluate
    Mask = _downsample_mask(X, evalPct)
    if log: log.info('after masking, will evaluate %0.2f%% of data' % (100.0*np.sum(Mask)/Mask.size))

    # Create storage for class probabilities.
    # Note that we store all class probabilities, even if this
    # is a binary classification problem (in which case p(1) = 1 - p(0)).
    # We do this to support multiclass classification seamlessly.
    [numZ, numChan, numRows, numCols] = X.shape
    numClasses = model.output_shape[-1]
    Prob = -1*np.ones([numZ, numClasses, numRows, numCols], dtype=np.float32)

    #----------------------------------------
    # Loop over mini-batches
    #----------------------------------------
    # note: set tileRadius to 0 so we evaluate whole volume
    it = emlib.interior_pixel_generator(X, 0, batchSize, mask=Mask)

    for mbIdx, (Idx, epochPct) in enumerate(it): 
        n = Idx.shape[0] # may be < batchSize on final iteration
        Xi = ste.extract(Idx)
        prob = model.predict_on_batch(Xi)
        # updated based on Keras API changes
        #Prob[Idx[:,0], :, Idx[:,1], Idx[:,2]] = prob[0][:n,:]
        Prob[Idx[:,0], :, Idx[:,1], Idx[:,2]] = prob[:n,:]

        # notify user re. progress
        elapsed = (time.time() - startTime) / 60.0
        if (lastChatter+2) < elapsed:  
            lastChatter = elapsed
            if log: log.info("  last pixel %s (%0.2f%% complete)" % (str(Idx[-1,:]), 100.*epochPct))

    return Prob
コード例 #6
0
ファイル: train.py プロジェクト: mjpekala/bio-segmentation
def _evaluate(model, X, Y, omitLabels=[], batchSize=100, log=None):
    """Evaluate model on held-out data.  Here, used to periodically
    report performance on validation data.
    """
    #----------------------------------------
    # Pre-allocate some variables & storage.
    #----------------------------------------
    nChannels, tileRows, tileCols = model.input_shape[1:4]
    tileRadius = int(tileRows/2)
    ste = emlib.SimpleTileExtractor(tileRows, X)

    numClasses = model.output_shape[-1]
    [numZ, numChan, numRows, numCols] = X.shape
    Prob = np.nan * np.ones([numZ, numClasses, numRows, numCols],
                            dtype=np.float32)

    #----------------------------------------
    # Loop over mini-batches
    #----------------------------------------
    it = emlib.interior_pixel_generator(X, tileRadius, batchSize)

    for mbIdx, (Idx, epochPct) in enumerate(it): 
        n = Idx.shape[0]         # may be < batchSize on final iteration
        Xi = ste.extract(Idx)
        prob = model.predict_on_batch(Xi)
        # Note: it seems the Keras API has changed...
        #Prob[Idx[:,0], :, Idx[:,1], Idx[:,2]] = prob[0][:n,:]
        Prob[Idx[:,0], :, Idx[:,1], Idx[:,2]] = prob[:n,:]

    # Evaluate accuracy only on the subset of pixels that:
    #   o were actually provided to the CNN (not downsampled)
    #   o have a label that should be evaluated
    #
    # The mask tensor M will indicate which pixels to consider.
    M = np.all(np.isfinite(Prob), axis=1)
    for om in omitLabels:
        M[Y==om] = False
    Yhat = np.argmax(Prob, axis=1)  # probabilities -> class labels
    acc = 100.0 * np.sum(Yhat[M] == Y[M]) / np.sum(M)

    return Prob, acc
コード例 #7
0
def _training_loop(solver,
                   X,
                   Y,
                   M,
                   solverParam,
                   batchDim,
                   outDir,
                   omitLabels=[],
                   Xvalid=None,
                   Yvalid=None,
                   syn_func=None):
    """Main CNN training loop.
                   
    """
    assert (batchDim[2] == batchDim[3])  # tiles must be square

    # Some variables and storage that we'll use in the loop below
    #
    tileRadius = int(batchDim[2] / 2)
    Xi = np.zeros(batchDim, dtype=np.float32)
    yi = np.zeros((batchDim[0], ), dtype=np.float32)
    yMax = np.max(Y).astype(np.int32)

    losses = np.zeros((solverParam.max_iter, ))
    acc = np.zeros((solverParam.max_iter, ))
    currIter = 0
    currEpoch = 0

    # SGD parameters.  SGD with momentum is of the form:
    #
    #    V_{t+1} = \mu V_t - \alpha \nablaL(W_t)
    #    W_{t+1} = W_t + V_{t+1}
    #
    # where W are the weights and V the previous update.
    # Ref: http://caffe.berkeleyvision.org/tutorial/solver.html
    #
    alpha = solverParam.base_lr  # alpha := learning rate
    mu = solverParam.momentum  # mu := momentum
    gamma = solverParam.gamma  # gamma := step factor
    isModeStep = (solverParam.lr_policy == u'step')
    isTypeSGD = (
        solverParam.solver_type == solverParam.SolverType.Value('SGD'))
    Vall = {}  # stores previous SGD steps (for all layers)

    if not (isModeStep and isTypeSGD):
        raise RuntimeError(
            'Sorry - only support SGD "step" mode at the present')

    # TODO: weight decay
    # TODO: layer-specific weights

    cnnTime = 0.0  # time spent doing core CNN operations
    tic = time.time()

    while currIter < solverParam.max_iter:

        #--------------------------------------------------
        # Each generator provides a single epoch's worth of data.
        # However, Caffe doesn't really recognize the notion of an epoch; instead,
        # they specify a number of training "iterations" (mini-batch evaluations, I assume).
        # So the inner loop below is for a single epoch, which we may terminate
        # early if the max # of iterations is reached.
        #--------------------------------------------------
        currEpoch += 1
        it = emlib.stratified_interior_pixel_generator(Y,
                                                       tileRadius,
                                                       batchDim[0],
                                                       mask=M,
                                                       omitLabels=omitLabels)
        for Idx, epochPct in it:
            # Map the indices Idx -> tiles Xi and labels yi
            #
            # Note: if Idx.shape[0] < batchDim[0] (last iteration of an epoch) a few examples
            # from the previous minibatch will be "recycled" here. This is intentional
            # (to keep batch sizes consistent even if data set size is not a multiple
            #  of the minibatch size).
            #
            for jj in range(Idx.shape[0]):
                yi[jj] = Y[Idx[jj, 0], Idx[jj, 1], Idx[jj, 2]]
                a = Idx[jj, 1] - tileRadius
                b = Idx[jj, 1] + tileRadius + 1
                c = Idx[jj, 2] - tileRadius
                d = Idx[jj, 2] + tileRadius + 1
                Xi[jj, 0, :, :] = X[Idx[jj, 0], a:b, c:d]

            # label-preserving data transformation (synthetic data generation)
            if syn_func is not None:
                #Xi = _xform_minibatch(Xi)
                Xi = syn_func(Xi)

            #----------------------------------------
            # one forward/backward pass and update weights
            # (SGD with momentum term)
            #----------------------------------------
            _tmp = time.time()
            solver.net.set_input_arrays(Xi, yi)
            # XXX: could call preprocess() here?
            rv = solver.net.forward()
            solver.net.backward()

            for lIdx, layer in enumerate(solver.net.layers):
                for bIdx, blob in enumerate(layer.blobs):
                    key = (lIdx, bIdx)
                    V = Vall.get(key, 0.0)
                    Vnext = mu * V - alpha * blob.diff
                    blob.data[...] += Vnext
                    Vall[key] = Vnext
            cnnTime += time.time() - _tmp

            # update running list of losses with the loss from this mini batch
            losses[currIter] = np.squeeze(rv['loss'])
            acc[currIter] = np.squeeze(rv['accuracy'])
            currIter += 1

            #----------------------------------------
            # Some events occur on mini-batch intervals.
            # Deal with those now.
            #----------------------------------------
            if (currIter % solverParam.snapshot) == 0:
                fn = os.path.join(outDir, 'iter_%06d.caffemodel' % (currIter))
                solver.net.save(str(fn))

            if isModeStep and ((currIter % solverParam.stepsize) == 0):
                alpha *= gamma

            if (currIter % solverParam.display) == 1:
                elapsed = (time.time() - tic) / 60.
                print "[train]: completed iteration %d (of %d; %0.2f min elapsed; %0.2f CNN min)" % (
                    currIter, solverParam.max_iter, elapsed, cnnTime / 60.)
                print "[train]:    epoch: %d (%0.2f), loss: %0.3f, acc: %0.3f, learn rate: %0.3e" % (
                    currEpoch, 100 * epochPct,
                    np.mean(losses[max(0, currIter - 10):currIter]),
                    np.mean(acc[max(0, currIter - 10):currIter]), alpha)
                sys.stdout.flush()

            if currIter >= solverParam.max_iter:
                break  # in case we hit max_iter on a non-epoch boundary

        #--------------------------------------------------
        # After each training epoch is complete, if we have validation
        # data, evaluate it.
        # Note: this only requires forward passes through the network
        #--------------------------------------------------
        if (Xvalid is not None) and (Xvalid.size != 0) and (
                Yvalid is not None) and (Yvalid.size != 0):
            # Mask out pixels whose label we don't care about.
            Mvalid = np.ones(Yvalid.shape, dtype=bool)
            for yIgnore in omitLabels:
                Mvalid[Yvalid == yIgnore] = False

            print "[train]:    Evaluating on validation data (%d pixels)..." % np.sum(
                Mvalid)
            Confusion = np.zeros((yMax + 1, yMax + 1))  # confusion matrix

            it = emlib.interior_pixel_generator(Yvalid,
                                                tileRadius,
                                                batchDim[0],
                                                mask=Mvalid)
            for Idx, epochPct in it:
                # Extract subtiles from validation data set
                for jj in range(Idx.shape[0]):
                    yi[jj] = Yvalid[Idx[jj, 0], Idx[jj, 1], Idx[jj, 2]]
                    a = Idx[jj, 1] - tileRadius
                    b = Idx[jj, 1] + tileRadius + 1
                    c = Idx[jj, 2] - tileRadius
                    d = Idx[jj, 2] + tileRadius + 1
                    Xi[jj, 0, :, :] = Xvalid[Idx[jj, 0], a:b, c:d]

                #----------------------------------------
                # one forward pass; no backward pass
                #----------------------------------------
                solver.net.set_input_arrays(Xi, yi)
                # XXX: could call preprocess() here?
                rv = solver.net.forward()

                # extract statistics
                Prob = np.squeeze(
                    rv['prob']
                )  # matrix of estimated probabilities for each object
                yHat = np.argmax(
                    Prob,
                    1)  # estimated class is highest probability in vector
                for yTmp in range(
                        yMax + 1
                ):  # note: assumes class labels are in {0, 1,..,n_classes-1}
                    bits = (yi.astype(np.int32) == yTmp)
                    for jj in range(yMax + 1):
                        Confusion[yTmp, jj] += np.sum(yHat[bits] == jj)

            print '[train]: Validation results:'
            print '      %s' % str(Confusion)
            if yMax == 1:
                # Assume a binary classification problem where 0 is non-target and 1 is target.
                #
                # precision := TP / (TP + FP)
                # recall    := TP / (TP + FN)
                #
                #  Confusion Matrix:
                #                  yHat=0       yHat=1
                #     y=0           TN            FP
                #     y=1           FN            TP
                #
                precision = (1.0 * Confusion[1, 1]) / np.sum(Confusion[:, 1])
                recall = (1.0 * Confusion[1, 1]) / np.sum(Confusion[1, :])
                f1Score = (2.0 * precision * recall) / (precision + recall)
                print '    precision=%0.3f, recall=%0.3f' % (precision, recall)
                print '    F1=%0.3f' % f1Score
        else:
            print '[train]: Not using a validation data set'

        sys.stdout.flush()
        # ----- end one epoch -----

    # complete
    print "[train]:    all done!"
    return losses, acc
コード例 #8
0
ファイル: make_lmdb.py プロジェクト: iscoe/coca
def main(args):
    tileRadius = np.floor(args.tileSize/2)
    nMiniBatch = 1000 # here, a "mini-batch" specifies LMDB transaction size

    # make sure we don't clobber an existing output
    if os.path.exists(args.outDir):
        raise RuntimeError('Output path "%s" already exists; please move out of the way and try again' % args.outDir)


    # load the data volumes (EM image and labels, if any)
    print('[make_lmdb]: loading EM data file: %s' % args.emFileName)
    X = emlib.load_cube(args.emFileName, np.float32)

    if args.labelsFileName: 
        print('[make_lmdb]: loading labels file: %s' % args.labelsFileName) 
        Y = emlib.load_cube(args.labelsFileName, np.float32)
        Y = emlib.fix_class_labels(Y, eval(args.omitLabels))
        assert(Y.shape == X.shape)
    else:
        print('[make_lmdb]: no labels file; assuming this is a test volume')
        Y = np.zeros(X.shape)


    # usually we expect fewer slices in Z than pixels in X or Y.
    # Make sure the dimensions look ok before proceeding.
    assert(X.shape[0] < X.shape[1])
    assert(X.shape[0] < X.shape[2])

    # Identify the subset of the data to use for training.
    # (default is to use it all)
    if len(args.slicesExpr): 
        sliceIdx = eval(args.slicesExpr) 
        X = X[sliceIdx, :, :]  # python puts the z dimension first... 
        Y = Y[sliceIdx, :, :]
    X = X.astype(np.uint8)  # critical!! otherwise, Caffe just flails...

    print('[make_lmdb]: EM volume shape: %s' % str(X.shape))
    print('[make_lmdb]: yAll is %s' % np.unique(Y))
    print('[make_lmdb]: %0.2f%% pixels will be omitted' % (100.0*np.sum(Y==-1)/numel(Y)))
    print('[make_lmdb]: writing results to: %s' % args.outDir)
    print('')
    sys.stdout.flush()

    # Create the output database.
    # Multiply the actual size by a fudge factor to get a safe upper bound
    dbSize = (X.nbytes * args.tileSize * args.tileSize + Y.nbytes) * 10
    env = lmdb.open(args.outDir, map_size=dbSize)

    # Extract all possible tiles.
    # This corresponds to extracting one "epoch" worth of tiles.
    tileId = 0
    lastChatter = -1
    tic = time.time()
    yCnt = np.zeros(sum(np.unique(Y) >= 0))

    if np.any(Y > 0): 
        # generates a balanced training data set (subsamples and shuffles)
        it = emlib.stratified_interior_pixel_generator(Y, tileRadius, nMiniBatch, omitLabels=[-1])
    else:
        # enumerates all possible tiles in order (no shuffling)
        it = emlib.interior_pixel_generator(X, tileRadius, nMiniBatch)


    for Idx, epochPct in it: 
        # respect upper bound on number of examples
        if tileId > args.maxNumExamples: 
            print('[make_lmdb]: stopping at %d (max number of examples reached\n)' % (tileId-1))
            break

        # Each mini-batch will be added to the database as a single transaction.
        with env.begin(write=True) as txn:
            # Translate indices Idx -> tiles Xi and labels yi.
            for jj in range(Idx.shape[0]):
                yi = Y[ Idx[jj,0], Idx[jj,1], Idx[jj,2] ]
                yi = int(yi)
                a = Idx[jj,1] - tileRadius
                b = Idx[jj,1] + tileRadius + 1
                c = Idx[jj,2] - tileRadius
                d = Idx[jj,2] + tileRadius + 1
                Xi = X[ Idx[jj,0], a:b, c:d ]
                assert(Xi.shape == (args.tileSize, args.tileSize))

                datum = caffe.proto.caffe_pb2.Datum()
                datum.channels = 1
                datum.height = Xi.shape[0]
                datum.width = Xi.shape[1]
                datum.data = Xi.tostring() # use tobytes() for newer numpy
                datum.label = yi
                strId = '{:08}'.format(tileId)

                txn.put(strId.encode('ascii'), datum.SerializeToString())
                tileId += 1
                yCnt[yi] += 1

                # check early termination conditions
                if tileId > args.maxNumExamples:
                    break

        #if np.floor(epochPct) > lastChatter: 
        print('[make_lmdb] %% %0.2f done (%0.2f min;   yCnt=%s)' % ((100*epochPct), (time.time() - tic)/60, str(yCnt)))
        lastChatter = epochPct
コード例 #9
0
def _eval_cube(net, X, M, batchDim):
    """Uses Caffe to make predictions for the EM cube X."""

    assert (batchDim[2] == batchDim[3])  # currently we assume tiles are square

    #--------------------------------------------------
    # initialize variables and storage needed in the processing loop below
    #--------------------------------------------------
    tileRadius = int(batchDim[2] / 2)
    Xi = np.zeros(batchDim, dtype=np.float32)
    yDummy = np.zeros((batchDim[0], ), dtype=np.float32)
    cnnTime = 0.0  # time spent doing core CNN operations
    nClasses = net.blobs['prob'].data.shape[
        1]  # *** Assumes a layer called "prob"

    # allocate memory for return values
    # if we don't evaluate all pixels, the
    # ones not evaluated will have label -1
    Yhat = -1 * np.ones((nClasses, X.shape[0], X.shape[1], X.shape[2]))

    print "[deploy]: Yhat shape: %s" % str(Yhat.shape)
    sys.stdout.flush()

    #--------------------------------------------------
    # process the cube
    #--------------------------------------------------
    tic = time.time()
    lastChatter = None

    for Idx, pct in emlib.interior_pixel_generator(X,
                                                   tileRadius,
                                                   batchDim[0],
                                                   mask=M):
        # populate the mini-batch buffer
        for jj in range(Idx.shape[0]):
            a = Idx[jj, 1] - tileRadius
            b = Idx[jj, 1] + tileRadius + 1
            c = Idx[jj, 2] - tileRadius
            d = Idx[jj, 2] + tileRadius + 1
            Xi[jj, 0, :, :] = X[Idx[jj, 0], a:b, c:d]

        # CNN forward pass
        _tmp = time.time()
        net.set_input_arrays(Xi, yDummy)
        out = net.forward()
        yiHat = out['prob']
        cnnTime += time.time() - _tmp

        # On some version of Caffe, yiHat is (batchSize, nClasses, 1, 1)
        # On newer versions, it is natively (batchSize, nClasses)
        # The squeeze here is to accommodate older versions
        yiHat = np.squeeze(yiHat)

        # store the per-class probability estimates.
        #
        # * Note that on the final iteration, the size of yiHat may not match
        #   the remaining space in Yhat (unless we get lucky and the data cube
        #   size is a multiple of the mini-batch size).  This is why we slice
        #   yijHat before assigning to Yhat.
        for jj in range(nClasses):
            yijHat = yiHat[:,
                           jj]  # get slice containing probabilities for class j
            assert (len(yijHat.shape) == 1)  # should be a vector (vs tensor)
            Yhat[jj, Idx[:, 0], Idx[:, 1],
                 Idx[:, 2]] = yijHat[:Idx.shape[0]]  # (*)

        # provide feedback on progress so far
        elapsed = (time.time() - tic) / 60.
        if (lastChatter is None) or ((elapsed - lastChatter) > 2):
            print(
                '[deploy]:  %0.2f min elapsed (%0.2f CNN min, %0.2f%% complete)'
                % (elapsed, cnnTime / 60., 100. * pct))
            sys.stdout.flush()
            lastChatter = elapsed

    # all done!
    print('[deploy]: Finished processing cube.')
    print('[deploy]: Net time was: %0.2f min (%0.2f CNN min)' %
          (elapsed, cnnTime / 60.))
    return Yhat
コード例 #10
0
ファイル: deploy.py プロジェクト: livst/coca
def _eval_cube(net, X, M, batchDim, extractFeat=''):
    """
      PARAMETERS:
        net      - a Caffe network object
        X        - A 3d tensor of data to evaluate
        M        - A boolean 3d tensor mask; 1 := evaluate the corresponding pixel
        batchDim - Length 2 vector of tile [width,height].  
      
      RETURN VALUES:
        Yhat   - a tensor with dimensions (#classes, ...)   where "..." denotes data cube dimensions
        Xprime - a tensor with dimensions (#features, ...)  where "..." denotes data cube dimensions
    """

    assert (batchDim[2] == batchDim[3])  # currently we assume tiles are square

    #--------------------------------------------------
    # initialize variables and storage needed in the processing loop below
    #--------------------------------------------------
    tileRadius = int(batchDim[2] / 2)
    Xi = np.zeros(batchDim, dtype=np.float32)
    yDummy = np.zeros((batchDim[0], ), dtype=np.float32)
    cnnTime = 0.0  # time spent doing core CNN operations
    nClasses = net.blobs['prob'].data.shape[
        1]  # *** Assumes a layer called "prob"

    # allocate memory for return values
    Yhat = -1 * np.ones((nClasses, X.shape[0], X.shape[1], X.shape[2]))
    if len(extractFeat):
        nFeats = net.blobs[extractFeat].data.shape[1]
        Xprime = np.zeros((nFeats, X.shape[0], X.shape[1], X.shape[2]))
    else:
        Xprime = None

    print "[deploy]: Yhat shape: %s" % str(Yhat.shape)
    if Xprime is not None:
        print "[deploy]: Extracting features from layer: %s" % extractFeat
        print "[deploy]: Xprime shape:                   %s" % str(
            Xprime.shape)
    sys.stdout.flush()

    #--------------------------------------------------
    # process the cube
    #--------------------------------------------------
    tic = time.time()
    lastChatter = None

    for Idx, pct in emlib.interior_pixel_generator(X,
                                                   tileRadius,
                                                   batchDim[0],
                                                   mask=M):
        # populate the mini-batch buffer
        for jj in range(Idx.shape[0]):
            a = Idx[jj, 1] - tileRadius
            b = Idx[jj, 1] + tileRadius + 1
            c = Idx[jj, 2] - tileRadius
            d = Idx[jj, 2] + tileRadius + 1
            Xi[jj, 0, :, :] = X[Idx[jj, 0], a:b, c:d]

        # CNN forward pass
        _tmp = time.time()
        net.set_input_arrays(Xi, yDummy)
        out = net.forward()
        yiHat = out['prob']
        cnnTime += time.time() - _tmp

        # On some version of Caffe, yiHat is (batchSize, nClasses, 1, 1)
        # On newer versions, it is natively (batchSize, nClasses)
        # The squeeze here is to accommodate older versions
        yiHat = np.squeeze(yiHat)

        # store the per-class probability estimates.
        #
        # * Note that on the final iteration, the size of yiHat may not match
        #   the remaining space in Yhat (unless we get lucky and the data cube
        #   size is a multiple of the mini-batch size).  This is why we slice
        #   yijHat before assigning to Yhat.
        for jj in range(nClasses):
            yijHat = yiHat[:,
                           jj]  # get slice containing probabilities for class j
            assert (len(yijHat.shape) == 1)  # should be a vector (vs tensor)
            Yhat[jj, Idx[:, 0], Idx[:, 1],
                 Idx[:, 2]] = yijHat[:Idx.shape[0]]  # (*)

        # for features: net.blobs['ip1'].data  should be (100,200,1,1) for batch size 100, ip output size 200
        if Xprime is not None:
            for jj in range(nFeats):
                Xprimejj = np.squeeze(net.blobs[extractFeat].data[:, jj, :, :]
                                      )  # feature jj, all objects
                assert (len(Xprimejj.shape) == 1
                        )  # should be a vector (vs tensor)
                Xprime[jj, Idx[:, 0], Idx[:, 1],
                       Idx[:, 2]] = Xprimejj[:Idx.shape[0]]

        # provide feedback on progress so far
        elapsed = (time.time() - tic) / 60.
        if (lastChatter is None) or ((elapsed - lastChatter) > 2):
            lastChatter = elapsed
            print "[deploy]: processed pixel at index %s (%0.2f min elapsed; %0.2f CNN min)" % (
                str(Idx[-1, :]), elapsed, cnnTime / 60.)
            sys.stdout.flush()

    print(
        '[deploy]: Finished processing cube.  Net time was: %0.2f min (%0.2f CNN min)'
        % (elapsed, cnnTime / 60.))

    return Yhat, Xprime
コード例 #11
0
ファイル: emcnn.py プロジェクト: livst/coca
def predict(net, X, Mask, batchDim):
    """Generates predictions for a data volume.

    The data volume is assumed to be a tensor with shape:
      (#slices, width, height)
    """
    # *** This code assumes a layer called "prob"
    if 'prob' not in net.blobs:
        raise RuntimeError("Can't find a layer with output called 'prob'")

    # Pre-allocate some variables & storage.
    #
    tileRadius = int(batchDim[2] / 2)
    Xi = np.zeros(batchDim, dtype=np.float32)
    yi = np.zeros((batchDim[0], ), dtype=np.float32)
    nClasses = net.blobs['prob'].data.shape[1]

    # if we don't evaluate all pixels, the
    # ones not evaluated will have label -1
    Prob = -1 * np.ones((nClasses, X.shape[0], X.shape[1], X.shape[2]))

    print "[emCNN]: Evaluating %0.2f%% of cube" % (100.0 * np.sum(Mask) /
                                                   numel(Mask))

    # do it
    tic = time.time()
    cnnTime = 0
    lastChatter = -2
    it = emlib.interior_pixel_generator(X, tileRadius, batchDim[0], mask=Mask)

    for Idx, epochPct in it:
        # Extract subtiles from validation data set
        for jj in range(Idx.shape[0]):
            a = Idx[jj, 1] - tileRadius
            b = Idx[jj, 1] + tileRadius + 1
            c = Idx[jj, 2] - tileRadius
            d = Idx[jj, 2] + tileRadius + 1
            Xi[jj, 0, :, :] = X[Idx[jj, 0], a:b, c:d]
            yi[jj] = 0  # this is just a dummy value

        #----------------------------------------
        # one forward pass; no backward pass
        #----------------------------------------
        _tmp = time.time()
        net.set_input_arrays(Xi, yi)
        out = net.forward()
        cnnTime += time.time() - _tmp

        # On some version of Caffe, Prob is (batchSize, nClasses, 1, 1)
        # On newer versions, it is natively (batchSize, nClasses)
        # The squeeze here is to accommodate older versions
        ProbBatch = np.squeeze(out['prob'])

        # store the per-class probability estimates.
        #
        # * Note that on the final iteration, the size of Prob  may not match
        #   the remaining space in Yhat (unless we get lucky and the data cube
        #   size is a multiple of the mini-batch size).  This is why we slice
        #   yijHat before assigning to Yhat.
        for jj in range(nClasses):
            pj = ProbBatch[:, jj]  # get probabilities for class j
            assert (len(pj.shape) == 1)  # should be a vector (vs tensor)
            Prob[jj, Idx[:, 0], Idx[:, 1], Idx[:,
                                               2]] = pj[:Idx.shape[0]]  # (*)

        elapsed = time.time() - tic

        if (lastChatter + 2) < (elapsed / 60.):  # notify progress every 2 min
            lastChatter = elapsed / 60.
            print('[emCNN]: elapsed=%0.2f min; %0.2f%% complete' %
                  (elapsed / 60., 100. * epochPct))

    # done
    elapsed = time.time() - tic
    print('[emCNN]: Total time to evaluate cube: %0.2f min (%0.2f CNN min)' %
          (elapsed / 60., cnnTime / 60.))
    return Prob
コード例 #12
0
ファイル: emcnn.py プロジェクト: mjpekala/faster-membranes
def predict(net, X, Mask, batchDim, nMC=0):
    """Generates predictions for a data volume.

    PARAMETERS:
      X        : a data volume/tensor with dimensions (#slices, height, width)
      Mask     : a boolean tensor with the same size as X.  Only positive
                 elements will be classified.  The prediction for all 
                 negative elements will be -1.  Use this to run predictions
                 on a subset of the volume.
      batchDim : a tuple of the form (#classes, minibatchSize, height, width)

    """    
    # *** This code assumes a layer called "prob"
    if 'prob' not in net.blobs: 
        raise RuntimeError("Can't find a layer called 'prob'")

    print "[emCNN]: Evaluating %0.2f%% of cube" % (100.0*np.sum(Mask)/numel(Mask)) 

    # Pre-allocate some variables & storage.
    #
    tileRadius = int(batchDim[2]/2)
    Xi = np.zeros(batchDim, dtype=np.float32)
    yi = np.zeros((batchDim[0],), dtype=np.float32)
    nClasses = net.blobs['prob'].data.shape[1]

    # if we don't evaluate all pixels, the 
    # ones not evaluated will have label -1
    if nMC <= 0: 
        Prob = -1*np.ones((nClasses, X.shape[0], X.shape[1], X.shape[2]))
    else:
        Prob = -1*np.ones((nMC, X.shape[0], X.shape[1], X.shape[2]))
        print "[emCNN]: Generating %d MC samples for class 0" % nMC
        if nClasses > 2: 
            print "[emCNN]: !!!WARNING!!! nClasses > 2 but we are only extracting MC samples for class 0 at this time..."


    # do it
    startTime = time.time()
    cnnTime = 0
    lastChatter = -2
    it = emlib.interior_pixel_generator(X, tileRadius, batchDim[0], mask=Mask)

    for Idx, epochPct in it: 
        # Extract subtiles from validation data set 
        for jj in range(Idx.shape[0]): 
            a = Idx[jj,1] - tileRadius 
            b = Idx[jj,1] + tileRadius + 1 
            c = Idx[jj,2] - tileRadius 
            d = Idx[jj,2] + tileRadius + 1 
            Xi[jj, 0, :, :] = X[ Idx[jj,0], a:b, c:d ]
            yi[jj] = 0  # this is just a dummy value

        #---------------------------------------- 
        # forward pass only (i.e. no backward pass)
        #----------------------------------------
        if nMC <= 0: 
            # this is the typical case - just one forward pass
            _tmp = time.time() 
            net.set_input_arrays(Xi, yi)
            out = net.forward() 
            cnnTime += time.time() - _tmp 
            
            # On some version of Caffe, Prob is (batchSize, nClasses, 1, 1) 
            # On newer versions, it is natively (batchSize, nClasses) 
            # The squeeze here is to accommodate older versions 
            ProbBatch = np.squeeze(out['prob']) 
            
            # store the per-class probability estimates.  
            # 
            # * On the final iteration, the size of Prob  may not match 
            #   the remaining space in Yhat (unless we get lucky and the 
            #   data cube size is a multiple of the mini-batch size).  
            #   This is why we slice yijHat before assigning to Yhat. 
            for jj in range(nClasses): 
                pj = ProbBatch[:,jj]      # get probabilities for class j 
                assert(len(pj.shape)==1)  # should be a vector (vs tensor) 
                Prob[jj, Idx[:,0], Idx[:,1], Idx[:,2]] = pj[:Idx.shape[0]]   # (*)
        else:
            # Generate MC-based uncertainty estimates
            # (instead of just a single point estimate)
            _tmp = time.time() 
            net.set_input_arrays(Xi, yi)

            # do nMC forward passes and save the probability estimate
            # for class 0.
            for ii in range(nMC): 
                out = net.forward() 
                ProbBatch = np.squeeze(out['prob']) 
                p0 = ProbBatch[:,0]      # get probabilities for class 0
                assert(len(p0.shape)==1)  # should be a vector (vs tensor) 
                Prob[ii, Idx[:,0], Idx[:,1], Idx[:,2]] = p0[:Idx.shape[0]]   # (*)
            cnnTime += time.time() - _tmp 
            

        elapsed = (time.time() - startTime) / 60.0

        if (lastChatter+2) < elapsed:  # notify progress every 2 min
            lastChatter = elapsed
            print('[emCNN]: elapsed=%0.2f min; %0.2f%% complete' % (elapsed, 100.*epochPct))
            sys.stdout.flush()

    # done
    print('[emCNN]: Total time to evaluate cube: %0.2f min (%0.2f CNN min)' % (elapsed, cnnTime/60.))
    return Prob
コード例 #13
0
ファイル: deploy.py プロジェクト: iscoe/coca
def _eval_cube(net, X, M, batchDim, extractFeat=''):
    """
      PARAMETERS:
        net      - a Caffe network object
        X        - A 3d tensor of data to evaluate
        M        - A boolean 3d tensor mask; 1 := evaluate the corresponding pixel
        batchDim - Length 2 vector of tile [width,height].  
      
      RETURN VALUES:
        Yhat   - a tensor with dimensions (#classes, ...)   where "..." denotes data cube dimensions
        Xprime - a tensor with dimensions (#features, ...)  where "..." denotes data cube dimensions
    """
    
    assert(batchDim[2] == batchDim[3])  # currently we assume tiles are square

    #--------------------------------------------------
    # initialize variables and storage needed in the processing loop below 
    #--------------------------------------------------
    tileRadius = int(batchDim[2]/2)
    Xi = np.zeros(batchDim, dtype=np.float32)
    yDummy = np.zeros((batchDim[0],), dtype=np.float32) 
    cnnTime = 0.0                                 # time spent doing core CNN operations
    nClasses = net.blobs['prob'].data.shape[1]    # *** Assumes a layer called "prob"

    # allocate memory for return values
    Yhat = -1*np.ones((nClasses, X.shape[0], X.shape[1], X.shape[2]))
    if len(extractFeat):
        nFeats = net.blobs[extractFeat].data.shape[1] 
        Xprime = np.zeros((nFeats, X.shape[0], X.shape[1], X.shape[2]))
    else:
        Xprime = None
        
    print "[deploy]: Yhat shape: %s" % str(Yhat.shape)
    if Xprime is not None:
        print "[deploy]: Extracting features from layer: %s" % extractFeat
        print "[deploy]: Xprime shape:                   %s" % str(Xprime.shape)
    sys.stdout.flush()

    #--------------------------------------------------
    # process the cube
    #--------------------------------------------------
    tic = time.time()
    lastChatter = None
 
    for Idx, pct in emlib.interior_pixel_generator(X, tileRadius, batchDim[0], mask=M):
        # populate the mini-batch buffer
        for jj in range(Idx.shape[0]):
            a = Idx[jj,1] - tileRadius
            b = Idx[jj,1] + tileRadius + 1
            c = Idx[jj,2] - tileRadius
            d = Idx[jj,2] + tileRadius + 1
            Xi[jj, 0, :, :] = X[ Idx[jj,0], a:b, c:d ]

        # CNN forward pass
        _tmp = time.time()
        net.set_input_arrays(Xi, yDummy)
        out = net.forward()
        yiHat = out['prob']
        cnnTime += time.time() - _tmp

        # On some version of Caffe, yiHat is (batchSize, nClasses, 1, 1)
        # On newer versions, it is natively (batchSize, nClasses)
        # The squeeze here is to accommodate older versions
        yiHat = np.squeeze(yiHat) 

        # store the per-class probability estimates.
        #
        # * Note that on the final iteration, the size of yiHat may not match
        #   the remaining space in Yhat (unless we get lucky and the data cube
        #   size is a multiple of the mini-batch size).  This is why we slice
        #   yijHat before assigning to Yhat.
        for jj in range(nClasses):
            yijHat = yiHat[:,jj]                   # get slice containing probabilities for class j
            assert(len(yijHat.shape)==1)           # should be a vector (vs tensor)
            Yhat[jj, Idx[:,0], Idx[:,1], Idx[:,2]] = yijHat[:Idx.shape[0]]   # (*)

        # for features: net.blobs['ip1'].data  should be (100,200,1,1) for batch size 100, ip output size 200
        if Xprime is not None:
            for jj in range(nFeats):
                Xprimejj = np.squeeze(net.blobs[extractFeat].data[:,jj,:,:])  # feature jj, all objects
                assert(len(Xprimejj.shape)==1)           # should be a vector (vs tensor)
                Xprime[jj, Idx[:,0], Idx[:,1], Idx[:,2]] = Xprimejj[:Idx.shape[0]]

        # provide feedback on progress so far    
        elapsed = (time.time() - tic) / 60.
        if (lastChatter is None) or ((elapsed - lastChatter) > 2):
            lastChatter = elapsed
            print "[deploy]: processed pixel at index %s (%0.2f min elapsed; %0.2f CNN min)" % (str(Idx[-1,:]), elapsed, cnnTime/60.)
            sys.stdout.flush()

    print('[deploy]: Finished processing cube.  Net time was: %0.2f min (%0.2f CNN min)' % (elapsed, cnnTime/60.))

    return Yhat, Xprime
コード例 #14
0
ファイル: train.py プロジェクト: iscoe/coca
def _training_loop(solver, X, Y, M, solverParam, batchDim, outDir,
                   omitLabels=[], Xvalid=None, Yvalid=None, syn_func=None):
    """Main CNN training loop.
                   
    """
    assert(batchDim[2] == batchDim[3])     # tiles must be square

    # Some variables and storage that we'll use in the loop below
    #
    tileRadius = int(batchDim[2]/2)
    Xi = np.zeros(batchDim, dtype=np.float32)
    yi = np.zeros((batchDim[0],), dtype=np.float32)
    yMax = np.max(Y).astype(np.int32)                
    
    losses = np.zeros((solverParam.max_iter,)) 
    acc = np.zeros((solverParam.max_iter,))
    currIter = 0
    currEpoch = 0

    # SGD parameters.  SGD with momentum is of the form:
    #
    #    V_{t+1} = \mu V_t - \alpha \nablaL(W_t)
    #    W_{t+1} = W_t + V_{t+1}
    #
    # where W are the weights and V the previous update.
    # Ref: http://caffe.berkeleyvision.org/tutorial/solver.html
    #
    alpha = solverParam.base_lr            # alpha := learning rate
    mu = solverParam.momentum              # mu := momentum
    gamma = solverParam.gamma              # gamma := step factor
    isModeStep = (solverParam.lr_policy == u'step')
    isTypeSGD = (solverParam.solver_type == solverParam.SolverType.Value('SGD'))
    Vall = {}                              # stores previous SGD steps (for all layers)

    if not (isModeStep and isTypeSGD):
        raise RuntimeError('Sorry - only support SGD "step" mode at the present')
 
    # TODO: weight decay
    # TODO: layer-specific weights
 
    cnnTime = 0.0                          # time spent doing core CNN operations
    tic = time.time()
    
    while currIter < solverParam.max_iter:

        #--------------------------------------------------
        # Each generator provides a single epoch's worth of data.
        # However, Caffe doesn't really recognize the notion of an epoch; instead,
        # they specify a number of training "iterations" (mini-batch evaluations, I assume).
        # So the inner loop below is for a single epoch, which we may terminate
        # early if the max # of iterations is reached.
        #--------------------------------------------------
        currEpoch += 1
        it = emlib.stratified_interior_pixel_generator(Y, tileRadius, batchDim[0], mask=M, omitLabels=omitLabels)
        for Idx, epochPct in it:
            # Map the indices Idx -> tiles Xi and labels yi
            # 
            # Note: if Idx.shape[0] < batchDim[0] (last iteration of an epoch) a few examples
            # from the previous minibatch will be "recycled" here. This is intentional
            # (to keep batch sizes consistent even if data set size is not a multiple
            #  of the minibatch size).
            #
            for jj in range(Idx.shape[0]):
                yi[jj] = Y[ Idx[jj,0], Idx[jj,1], Idx[jj,2] ]
                a = Idx[jj,1] - tileRadius
                b = Idx[jj,1] + tileRadius + 1
                c = Idx[jj,2] - tileRadius
                d = Idx[jj,2] + tileRadius + 1
                Xi[jj, 0, :, :] = X[ Idx[jj,0], a:b, c:d ]

            # label-preserving data transformation (synthetic data generation)
            if syn_func is not None:
                #Xi = _xform_minibatch(Xi)
                Xi = syn_func(Xi)

            #----------------------------------------
            # one forward/backward pass and update weights
            # (SGD with momentum term)
            #----------------------------------------
            _tmp = time.time()
            solver.net.set_input_arrays(Xi, yi)
            # XXX: could call preprocess() here?
            rv = solver.net.forward()
            solver.net.backward()

            for lIdx, layer in enumerate(solver.net.layers):
                for bIdx, blob in enumerate(layer.blobs):
                    key = (lIdx, bIdx)
                    V = Vall.get(key, 0.0)
                    Vnext = mu*V - alpha * blob.diff
                    blob.data[...] += Vnext
                    Vall[key] = Vnext
            cnnTime += time.time() - _tmp
                    
            # update running list of losses with the loss from this mini batch
            losses[currIter] = np.squeeze(rv['loss'])
            acc[currIter] = np.squeeze(rv['accuracy'])
            currIter += 1

            #----------------------------------------
            # Some events occur on mini-batch intervals.
            # Deal with those now.
            #----------------------------------------
            if (currIter % solverParam.snapshot) == 0:
                fn = os.path.join(outDir, 'iter_%06d.caffemodel' % (currIter))
                solver.net.save(str(fn))

            if isModeStep and ((currIter % solverParam.stepsize) == 0):
                alpha *= gamma

            if (currIter % solverParam.display) == 1:
                elapsed = (time.time() - tic)/60.
                print "[train]: completed iteration %d (of %d; %0.2f min elapsed; %0.2f CNN min)" % (currIter, solverParam.max_iter, elapsed, cnnTime/60.)
                print "[train]:    epoch: %d (%0.2f), loss: %0.3f, acc: %0.3f, learn rate: %0.3e" % (currEpoch, 100*epochPct, np.mean(losses[max(0,currIter-10):currIter]), np.mean(acc[max(0,currIter-10):currIter]), alpha)
                sys.stdout.flush()
 
            if currIter >= solverParam.max_iter:
                break  # in case we hit max_iter on a non-epoch boundary

                
        #--------------------------------------------------
        # After each training epoch is complete, if we have validation
        # data, evaluate it.
        # Note: this only requires forward passes through the network
        #--------------------------------------------------
        if (Xvalid is not None) and (Xvalid.size != 0) and (Yvalid is not None) and (Yvalid.size != 0):
            # Mask out pixels whose label we don't care about.
            Mvalid = np.ones(Yvalid.shape, dtype=bool)
            for yIgnore in omitLabels:
                Mvalid[Yvalid==yIgnore] = False

            print "[train]:    Evaluating on validation data (%d pixels)..." % np.sum(Mvalid)
            Confusion = np.zeros((yMax+1, yMax+1))    # confusion matrix
                
            it = emlib.interior_pixel_generator(Yvalid, tileRadius, batchDim[0], mask=Mvalid)
            for Idx, epochPct in it:
                # Extract subtiles from validation data set
                for jj in range(Idx.shape[0]):
                    yi[jj] = Yvalid[ Idx[jj,0], Idx[jj,1], Idx[jj,2] ]
                    a = Idx[jj,1] - tileRadius
                    b = Idx[jj,1] + tileRadius + 1
                    c = Idx[jj,2] - tileRadius
                    d = Idx[jj,2] + tileRadius + 1
                    Xi[jj, 0, :, :] = Xvalid[ Idx[jj,0], a:b, c:d ]

                #----------------------------------------
                # one forward pass; no backward pass
                #----------------------------------------
                solver.net.set_input_arrays(Xi, yi)
                # XXX: could call preprocess() here?
                rv = solver.net.forward()

                # extract statistics 
                Prob = np.squeeze(rv['prob'])       # matrix of estimated probabilities for each object
                yHat = np.argmax(Prob,1)            # estimated class is highest probability in vector
                for yTmp in range(yMax+1):          # note: assumes class labels are in {0, 1,..,n_classes-1}
                    bits = (yi.astype(np.int32) == yTmp)
                    for jj in range(yMax+1):
                        Confusion[yTmp,jj] += np.sum(yHat[bits]==jj)
 
            print '[train]: Validation results:'
            print '      %s' % str(Confusion)
            if yMax == 1:
                # Assume a binary classification problem where 0 is non-target and 1 is target.
                #
                # precision := TP / (TP + FP)
                # recall    := TP / (TP + FN)
                #
                #  Confusion Matrix:
                #                  yHat=0       yHat=1
                #     y=0           TN            FP
                #     y=1           FN            TP
                #
                precision = (1.0*Confusion[1,1]) / np.sum(Confusion[:,1])
                recall = (1.0*Confusion[1,1]) / np.sum(Confusion[1,:])
                f1Score = (2.0 * precision * recall) / (precision + recall);
                print '    precision=%0.3f, recall=%0.3f' % (precision, recall)
                print '    F1=%0.3f' % f1Score
        else:
            print '[train]: Not using a validation data set'
            
        sys.stdout.flush()
        # ----- end one epoch -----
                
 
    # complete
    print "[train]:    all done!"
    return losses, acc
コード例 #15
0
ファイル: emcnn.py プロジェクト: iscoe/coca
def predict(net, X, Mask, batchDim):
    """Generates predictions for a data volume.

    The data volume is assumed to be a tensor with shape:
      (#slices, width, height)
    """    
    # *** This code assumes a layer called "prob"
    if 'prob' not in net.blobs: 
        raise RuntimeError("Can't find a layer with output called 'prob'")

    # Pre-allocate some variables & storage.
    #
    tileRadius = int(batchDim[2]/2)
    Xi = np.zeros(batchDim, dtype=np.float32)
    yi = np.zeros((batchDim[0],), dtype=np.float32)
    nClasses = net.blobs['prob'].data.shape[1]

    # if we don't evaluate all pixels, the 
    # ones not evaluated will have label -1
    Prob = -1*np.ones((nClasses, X.shape[0], X.shape[1], X.shape[2]))

    print "[emCNN]: Evaluating %0.2f%% of cube" % (100.0*np.sum(Mask)/numel(Mask)) 

    # do it
    tic = time.time()
    cnnTime = 0
    lastChatter = -2
    it = emlib.interior_pixel_generator(X, tileRadius, batchDim[0], mask=Mask)

    for Idx, epochPct in it: 
        # Extract subtiles from validation data set 
        for jj in range(Idx.shape[0]): 
            a = Idx[jj,1] - tileRadius 
            b = Idx[jj,1] + tileRadius + 1 
            c = Idx[jj,2] - tileRadius 
            d = Idx[jj,2] + tileRadius + 1 
            Xi[jj, 0, :, :] = X[ Idx[jj,0], a:b, c:d ]
            yi[jj] = 0  # this is just a dummy value

        #---------------------------------------- 
        # one forward pass; no backward pass 
        #----------------------------------------
        _tmp = time.time()
        net.set_input_arrays(Xi, yi)
        out = net.forward()
        cnnTime += time.time() - _tmp

        # On some version of Caffe, Prob is (batchSize, nClasses, 1, 1)
        # On newer versions, it is natively (batchSize, nClasses)
        # The squeeze here is to accommodate older versions
        ProbBatch = np.squeeze(out['prob']) 

        # store the per-class probability estimates.
        #
        # * Note that on the final iteration, the size of Prob  may not match
        #   the remaining space in Yhat (unless we get lucky and the data cube
        #   size is a multiple of the mini-batch size).  This is why we slice
        #   yijHat before assigning to Yhat.
        for jj in range(nClasses):
            pj = ProbBatch[:,jj]      # get probabilities for class j
            assert(len(pj.shape)==1)  # should be a vector (vs tensor)
            Prob[jj, Idx[:,0], Idx[:,1], Idx[:,2]] = pj[:Idx.shape[0]]   # (*)


        elapsed = time.time() - tic

        if (lastChatter+2) < (elapsed/60.):  # notify progress every 2 min
            lastChatter = elapsed/60.
            print('[emCNN]: elapsed=%0.2f min; %0.2f%% complete' % (elapsed/60., 100.*epochPct))

    # done
    elapsed = time.time() - tic
    print('[emCNN]: Total time to evaluate cube: %0.2f min (%0.2f CNN min)' % (elapsed/60., cnnTime/60.))
    return Prob
コード例 #16
0
ファイル: deploy2.py プロジェクト: iscoe/coca
def _eval_cube(net, X, M, batchDim):
    """Uses Caffe to make predictions for the EM cube X."""
    
    assert(batchDim[2] == batchDim[3])  # currently we assume tiles are square

    #--------------------------------------------------
    # initialize variables and storage needed in the processing loop below 
    #--------------------------------------------------
    tileRadius = int(batchDim[2]/2)
    Xi = np.zeros(batchDim, dtype=np.float32)
    yDummy = np.zeros((batchDim[0],), dtype=np.float32) 
    cnnTime = 0.0                                 # time spent doing core CNN operations
    nClasses = net.blobs['prob'].data.shape[1]    # *** Assumes a layer called "prob"

    # allocate memory for return values
    # if we don't evaluate all pixels, the 
    # ones not evaluated will have label -1
    Yhat = -1*np.ones((nClasses, X.shape[0], X.shape[1], X.shape[2]))
        
    print "[deploy]: Yhat shape: %s" % str(Yhat.shape)
    sys.stdout.flush()

    #--------------------------------------------------
    # process the cube
    #--------------------------------------------------
    tic = time.time()
    lastChatter = None
 
    for Idx, pct in emlib.interior_pixel_generator(X, tileRadius, batchDim[0], mask=M):
        # populate the mini-batch buffer
        for jj in range(Idx.shape[0]):
            a = Idx[jj,1] - tileRadius
            b = Idx[jj,1] + tileRadius + 1
            c = Idx[jj,2] - tileRadius
            d = Idx[jj,2] + tileRadius + 1
            Xi[jj, 0, :, :] = X[ Idx[jj,0], a:b, c:d ]

        # CNN forward pass
        _tmp = time.time()
        net.set_input_arrays(Xi, yDummy)
        out = net.forward()
        yiHat = out['prob']
        cnnTime += time.time() - _tmp

        # On some version of Caffe, yiHat is (batchSize, nClasses, 1, 1)
        # On newer versions, it is natively (batchSize, nClasses)
        # The squeeze here is to accommodate older versions
        yiHat = np.squeeze(yiHat) 

        # store the per-class probability estimates.
        #
        # * Note that on the final iteration, the size of yiHat may not match
        #   the remaining space in Yhat (unless we get lucky and the data cube
        #   size is a multiple of the mini-batch size).  This is why we slice
        #   yijHat before assigning to Yhat.
        for jj in range(nClasses):
            yijHat = yiHat[:,jj]                   # get slice containing probabilities for class j
            assert(len(yijHat.shape)==1)           # should be a vector (vs tensor)
            Yhat[jj, Idx[:,0], Idx[:,1], Idx[:,2]] = yijHat[:Idx.shape[0]]   # (*)

        # provide feedback on progress so far    
        elapsed = (time.time() - tic) / 60.
        if (lastChatter is None) or ((elapsed - lastChatter) > 2):
            print('[deploy]:  %0.2f min elapsed (%0.2f CNN min, %0.2f%% complete)' % (elapsed, cnnTime/60., 100.*pct))
            sys.stdout.flush()
            lastChatter = elapsed


    # all done!
    print('[deploy]: Finished processing cube.')
    print('[deploy]: Net time was: %0.2f min (%0.2f CNN min)' % (elapsed, cnnTime/60.))
    return Yhat