コード例 #1
0
def _generic_plot(output_dir: str, master: skbio.OrdinationResults,
                  metadata: qiime2.Metadata,
                  other_pcoa: skbio.OrdinationResults, plot_name,
                  custom_axes: str=None):

    mf = metadata.to_dataframe()

    if other_pcoa is None:
        procrustes = None
    else:
        procrustes = [other_pcoa]

    viz = Emperor(master, mf, procrustes=procrustes, remote='.')

    if custom_axes is not None:
        viz.custom_axes = custom_axes

    if other_pcoa:
        viz.procrustes_names = ['reference', 'other']

    html = viz.make_emperor(standalone=True)
    viz.copy_support_files(output_dir)
    with open(os.path.join(output_dir, 'emperor.html'), 'w') as fh:
        fh.write(html)

    index = os.path.join(TEMPLATES, 'index.html')
    q2templates.render(index, output_dir, context={'plot_name': plot_name})
コード例 #2
0
ファイル: _plot.py プロジェクト: jakereps/q2-emperor
def _generic_plot(output_dir: str, master: skbio.OrdinationResults,
                  metadata: qiime2.Metadata,
                  other_pcoa: skbio.OrdinationResults, plot_name,
                  custom_axes: str=None,
                  feature_metadata: qiime2.Metadata=None):

    mf = metadata.to_dataframe()
    if feature_metadata is not None:
        feature_metadata = feature_metadata.to_dataframe()

    if other_pcoa is None:
        procrustes = None
    else:
        procrustes = [other_pcoa]

    viz = Emperor(master, mf, feature_mapping_file=feature_metadata,
                  procrustes=procrustes, remote='.')

    if custom_axes is not None:
        viz.custom_axes = custom_axes

    if other_pcoa:
        viz.procrustes_names = ['reference', 'other']

    html = viz.make_emperor(standalone=True)
    viz.copy_support_files(output_dir)
    with open(os.path.join(output_dir, 'emperor.html'), 'w') as fh:
        fh.write(html)

    index = os.path.join(TEMPLATES, 'index.html')
    q2templates.render(index, output_dir, context={'plot_name': plot_name})
コード例 #3
0
ファイル: _plot.py プロジェクト: gregcaporaso/q2-emperor
def plot(output_dir: str, pcoa: skbio.OrdinationResults,
         metadata: qiime2.Metadata, custom_axis: str=None) -> None:

    mf = metadata.to_dataframe()
    viz = Emperor(pcoa, mf, remote='.')

    if custom_axis is not None:
        # put custom_axis inside a list to workaround the type system not
        # supporting lists of types
        html = viz.make_emperor(standalone=True, custom_axes=[custom_axis])
    else:
        html = viz.make_emperor(standalone=True)
    viz.copy_support_files(output_dir)
    with open(os.path.join(output_dir, 'emperor.html'), 'w') as fh:
        fh.write(html)

    index = os.path.join(TEMPLATES, 'index.html')
    q2templates.render(index, output_dir)
コード例 #4
0
ファイル: _plot.py プロジェクト: thermokarst-forks/q2-emperor
def plot(output_dir: str,
         pcoa: skbio.OrdinationResults,
         metadata: qiime2.Metadata,
         custom_axis: str = None) -> None:

    mf = metadata.to_dataframe()
    viz = Emperor(pcoa, mf, remote='.')

    if custom_axis is not None:
        # put custom_axis inside a list to workaround the type system not
        # supporting lists of types
        html = viz.make_emperor(standalone=True, custom_axes=[custom_axis])
    else:
        html = viz.make_emperor(standalone=True)
    viz.copy_support_files(output_dir)
    with open(os.path.join(output_dir, 'emperor.html'), 'w') as fh:
        fh.write(html)

    index = os.path.join(TEMPLATES, 'index.html')
    q2templates.render(index, output_dir)
コード例 #5
0
def _generate_ordination_results_summary(files, metadata, out_dir):
    # Magic number [0] -> there is only one plain text file and it is the
    # ordination results
    ord_res = OrdinationResults.read(files['plain_text'][0])
    md_df = pd.DataFrame.from_dict(metadata, orient='index')
    emp = Emperor(ord_res, md_df, remote="emperor_support_files")

    html_summary_fp = join(out_dir, 'index.html')
    esf_dp = join(out_dir, 'emperor_support_files')
    makedirs(esf_dp)
    with open(html_summary_fp, 'w') as f:
        f.write(emp.make_emperor(standalone=True))
        emp.copy_support_files(esf_dp)

    return html_summary_fp, esf_dp
コード例 #6
0
ファイル: plugin_setup.py プロジェクト: ebolyen/q2-emperor
def plot(output_dir: str, sample_metadata: qiime.Metadata,
         pcoa: skbio.OrdinationResults) -> None:

    mf = sample_metadata.to_dataframe()

    output = join(output_dir, 'emperor-required-resources/')
    viz = Emperor(pcoa, mf, remote=output)

    with open(join(output_dir, 'index.html'), 'w') as f:
        # correct the path
        html = viz.make_emperor(standalone=True)
        viz.copy_support_files(output_dir)
        f.write(html)

    return None
コード例 #7
0
def generic_plot(output_dir: str,
                 master: skbio.OrdinationResults,
                 metadata: qiime2.Metadata,
                 other_pcoa: skbio.OrdinationResults,
                 plot_name: str,
                 info: str = None,
                 custom_axes: str = None,
                 settings: dict = None,
                 ignore_missing_samples: bool = False,
                 feature_metadata: qiime2.Metadata = None):

    mf = metadata.to_dataframe()
    if feature_metadata is not None:
        feature_metadata = feature_metadata.to_dataframe()

    if other_pcoa is None:
        procrustes = None
    else:
        procrustes = [other_pcoa]

    viz = Emperor(master,
                  mf,
                  feature_mapping_file=feature_metadata,
                  ignore_missing_samples=ignore_missing_samples,
                  procrustes=procrustes,
                  remote='.')

    if custom_axes is not None:
        viz.custom_axes = custom_axes

    if other_pcoa:
        viz.procrustes_names = ['reference', 'other']

    viz.info = info
    viz.settings = settings

    html = viz.make_emperor(standalone=True)
    viz.copy_support_files(output_dir)
    with open(os.path.join(output_dir, 'emperor.html'), 'w') as fh:
        fh.write(html)

    index = os.path.join(TEMPLATES, 'index.html')
    q2templates.render(index, output_dir, context={'plot_name': plot_name})
コード例 #8
0
def emperor_output(sklearn_output, full_file_list, eigenvalues, percent_variance, output_file, new_files = None):
    print("Made it to Emperor Function!")
    #read in sklearn output and format accordingly for emperor intake
    eigvals = pd.Series(data = eigenvalues)
    samples = pd.DataFrame(data = sklearn_output, index = full_file_list)
    p_explained = pd.Series(data = percent_variance)
    ores = OrdinationResults(long_method_name = "principal component analysis", short_method_name = "pcoa", eigvals = eigvals, samples = samples, proportion_explained = p_explained)
    
    #this first part is for the global metadata file
    global_metadata = pd.read_csv(config.PATH_TO_ORIGINAL_MAPPING_FILE, sep = "\t")
    global_metadata_headers = global_metadata.columns.tolist()
    global_metadata.rename(columns = {'filename': 'SampleID'}, inplace = True)
    global_metadata["type"] = "Global Data"
    global_metadata.set_index("SampleID", inplace = True)

    common = global_metadata    

    #this part is for the user uploaded metadata file
    if new_files != None:
        metadata_uploaded = pd.DataFrame({"SampleID": new_files, "type":["Your Data"] * len(new_files)})
        for item in global_metadata_headers:
            metadata_uploaded[item] = ["Your Data"] * len(new_files)
        metadata_uploaded.set_index("SampleID", inplace = True)
        
        common = pd.concat([global_metadata, metadata_uploaded])

   

    #so you need to align the metadata and the files contained within the ordination file BEFORE feeding it into the Emperor thing otherwise it doesn't like to output results  
    final_metadata, unused = common.align(samples, join = "right", axis = 0)
    
  
    #call stuff to ouput an emperor plot
    emp = Emperor(ores, final_metadata, remote = True)
           
    # create an output directory
    os.makedirs(output_file, exist_ok=True)

    with open(os.path.join(output_file, 'index.html'), 'w') as f:
        f.write(emp.make_emperor(standalone = True))
        emp.copy_support_files(output_file)
コード例 #9
0
def emperor_output(sklearn_output,
                   full_file_list,
                   eigenvalues,
                   percent_variance,
                   output_file,
                   new_files=[]):
    eigvals = pd.Series(data=eigenvalues)
    samples = pd.DataFrame(data=sklearn_output, index=full_file_list)
    samples.index.rename("SampleID", inplace=True)
    p_explained = pd.Series(data=percent_variance)
    ores = OrdinationResults(long_method_name="principal component analysis",
                             short_method_name="pcoa",
                             eigvals=eigvals,
                             samples=samples,
                             proportion_explained=p_explained)

    #read in all sample metadata
    df = pd.read_table(config.PATH_TO_ORIGINAL_MAPPING_FILE)
    df.rename(columns={"filename": "SampleID"}, inplace=True)
    df.set_index("SampleID", inplace=True)

    #handling the case in which the pca is a projection
    if len(new_files) != 0:
        df["Type"] = "Global"
        new_meta = pd.DataFrame({"SampleID": new_files, "Type": "Your Data"})
        new_meta.set_index("SampleID", inplace=True)
        df = pd.concat([df, new_meta], axis=0, join="outer")

    final_metadata, unused = df.align(samples, join="right", axis=0)

    #call stuff to ouput an emperor plot
    emp = Emperor(ores, final_metadata, remote=True)

    # create an output directory
    os.makedirs(output_file, exist_ok=True)

    with open(os.path.join(output_file, 'index.html'), 'w') as f:
        f.write(emp.make_emperor(standalone=True))
        emp.copy_support_files(output_file)
コード例 #10
0
def create_emperor_visual(args, pcfile):
    """
    Sample .pc file
    #     Eigvals	4
    # 0.2705559825337763	0.07359266496720843	0.02997793703738496	0.0
    # 
    # Proportion explained	4
    # 0.7231669539538659	0.19670525434062255	0.0801277917055116	0.0
    # 
    # Species	0	0
    # 
    # Site	4	4
    # ICM_LCY_Bv6--LCY_0001_2003_05_11	-0.04067063044757823	-0.09380781760926289	0.13680474645584195	0.0
    # ICM_LCY_Bv6--LCY_0003_2003_05_04	-0.11521436634022217	-0.15957409396683217	-0.10315005726535573	0.0
    # ICM_LCY_Bv6--LCY_0005_2003_05_16	0.4268532792747924	0.06657577342833808	-0.02212569426459717	0.0
    # ICM_LCY_Bv6--LCY_0007_2003_05_04	-0.2709682824869916	0.18680613814775715	-0.011528994925888972	0.0
    # 
    # Biplot	0	0
    # 
    # Site constraints	0	0
    """
    #print PCoA_result
    from emperor import Emperor
    from skbio import OrdinationResults

    #load metadata
    mf = load_mf(args.map_fp)
    # must read from file (scikit-bio version 0.5.1 http://scikit-bio.org/docs/0.5.1/generated/generated/skbio.stats.ordination.OrdinationResults.html
    res = OrdinationResults.read(pcfile)
    emp = Emperor(res, mf)
    #pcoa_outdir = os.path.join(args.basedir,'views', 'tmp',args.prefix+'_pcoa3d')
    pcoa_outdir = os.path.join(args.basedir, args.prefix + '_pcoa3d')
    print('OUT?', pcoa_outdir, args.basedir)
    os.makedirs(pcoa_outdir, mode=0o777, exist_ok=True)
    with open(os.path.join(pcoa_outdir, 'index.html'), 'w') as f:
        f.write(emp.make_emperor(standalone=True))
        emp.copy_support_files(pcoa_outdir)
コード例 #11
0
def create_emperor_visual(args, pcfile):
    """
    Sample .pc file
    #     Eigvals	4
    # 0.2705559825337763	0.07359266496720843	0.02997793703738496	0.0
    # 
    # Proportion explained	4
    # 0.7231669539538659	0.19670525434062255	0.0801277917055116	0.0
    # 
    # Species	0	0
    # 
    # Site	4	4
    # ICM_LCY_Bv6--LCY_0001_2003_05_11	-0.04067063044757823	-0.09380781760926289	0.13680474645584195	0.0
    # ICM_LCY_Bv6--LCY_0003_2003_05_04	-0.11521436634022217	-0.15957409396683217	-0.10315005726535573	0.0
    # ICM_LCY_Bv6--LCY_0005_2003_05_16	0.4268532792747924	0.06657577342833808	-0.02212569426459717	0.0
    # ICM_LCY_Bv6--LCY_0007_2003_05_04	-0.2709682824869916	0.18680613814775715	-0.011528994925888972	0.0
    # 
    # Biplot	0	0
    # 
    # Site constraints	0	0
    """
    #print PCoA_result
    from emperor import Emperor
    from skbio import OrdinationResults
    
    #load metadata
    mf = load_mf(args.map_fp)
    # must read from file (scikit-bio version 0.5.1 http://scikit-bio.org/docs/0.5.1/generated/generated/skbio.stats.ordination.OrdinationResults.html
    res = OrdinationResults.read(pcfile)
    emp = Emperor(res, mf)
    pcoa_outdir = os.path.join(args.basedir,'views', 'tmp',args.prefix+'_pcoa3d')
    print('OUT?',pcoa_outdir,args.basedir)
    os.makedirs(pcoa_outdir, exist_ok=True)
    with open(os.path.join(pcoa_outdir, 'index.html'), 'w') as f:
        f.write(emp.make_emperor(standalone=True))
        emp.copy_support_files(pcoa_outdir)
コード例 #12
0
coords = (np.random.randn(N, 10) * 1000).tolist()
pct_var = pd.Series(1/np.exp(np.arange(10)))
pct_var = pct_var / pct_var.sum()


md_headers = ['SampleID', 'DOB', 'Strings']
metadata = []
for _id in coords_ids:
    metadata.append([_id, ''.join(sample(set(categories), 1)), ''.join(choice(
        ascii_letters) for x in range(10))])

samples = pd.DataFrame(index=coords_ids, data=coords)

mf = pd.DataFrame(data=metadata, columns=md_headers)
mf.set_index('SampleID', inplace=True)

minerals = ['rhodium', 'platinum', 'gold', 'ruthenium']
mf['subject'] = np.random.randint(low=0, high=len(minerals), size=N)

mf['subject'] = mf['subject'].apply(lambda x: minerals[x])

res = OrdinationResults(short_method_name='PC', long_method_name='Principal '
                        'Coordinates Analysis', eigvals=pct_var,
                        samples=samples, proportion_explained=pct_var)


viz = Emperor(res, mf, remote=get_emperor_support_files_dir())

with open('new-emperor.html', 'w') as f:
    f.write(viz.make_emperor(standalone=True))
コード例 #13
0
def main(arguments):

    parser = argparse.ArgumentParser(
        description=__doc__,
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog=textwrap.dedent(
            '''additional information: output of taxsum, betadiv and pcoa are written in STDOUT
If you use microbiomeutils in your work, please cite:

    Tremblay, Julien
    microbiomeutils 0.9 : Microbiome utilities
    https://github.com/jtremblay/microbiomeutils
    
Thank you.'''))
    subparsers = parser.add_subparsers(title='subcommands',
                                       description='valid subcommands',
                                       help='additional help',
                                       dest="command")
    parser_bd = subparsers.add_parser('betadiv')
    parser_bd.add_argument('-i',
                           '--infile-feature-table',
                           help="Input file",
                           type=argparse.FileType('r'))
    parser_bd.add_argument("-m",
                           "--metric",
                           help="Diversity metric (default: bray-curtis)",
                           choices=["bray-curtis", "weighted-unifrac"],
                           default="bray-curtis")
    parser_bd.add_argument("-t",
                           "--infile-tree",
                           help="Tree file (for weighted uniFrac)",
                           type=argparse.FileType('r'))

    #parser_bd.set_defaults(func=betadiv)
    parser_ts = subparsers.add_parser('taxsum')
    parser_ts.add_argument('-i',
                           '--infile-feature-table',
                           help="Input file",
                           type=argparse.FileType('r'))
    parser_ts.add_argument("-t",
                           "--sumtype",
                           help="Summary type (default: absolute)",
                           choices=["absolute", "relative"],
                           default="absolute")
    parser_ts.add_argument("-l",
                           "--level",
                           help="Level <int> 1 to 7",
                           choices=["1", "2", "3", "4", "5", "6", "7", "8"],
                           default="3")
    #parser_bd.set_defaults(func=taxsum)
    parser_ts = subparsers.add_parser('pcoa')
    parser_ts.add_argument('-i',
                           '--infile-distance-matrix',
                           help="Input file",
                           type=argparse.FileType('r'))

    parser_ts = subparsers.add_parser('emperor')
    parser_ts.add_argument('-i',
                           '--infile-coords',
                           help="Input file",
                           type=argparse.FileType('r'))
    parser_ts.add_argument('-m',
                           '--mapping-file',
                           help="Mapping file",
                           type=argparse.FileType('r'))
    parser_ts.add_argument('-o', '--outdir', help="Output directory")

    args = parser.parse_args(arguments)

    if args.command == 'betadiv':
        infile_feature_table = os.path.abspath(args.infile_feature_table.name)
        sys.stderr.write("[betadiv]\n")
        if args.infile_tree is None and args.metric == "weighted-unifrac":
            raise ValueError(
                'weighted-unifrac needs a tree supplied. --infile-tree needed')

        if args.metric == "bray-curtis":
            betadiv(infile_feature_table, args.metric)
        else:
            betadiv(infile_feature_table, args.metric, args.infile_tree.name)

    elif args.command == 'taxsum':
        infile_feature_table = os.path.abspath(args.infile_feature_table.name)
        sys.stderr.write("[taxsum]\n")
        taxsum(infile_feature_table, args.sumtype, args.level)

    elif args.command == 'pcoa':
        sys.stderr.write("[pcoa]\n")
        infile_distance_matrix = os.path.abspath(
            args.infile_distance_matrix.name)
        ord_res = do_pcoa(infile_distance_matrix)

    elif args.command == 'emperor':
        sys.stderr.write("[emperor]\n")
        metadata = pd.read_csv(args.mapping_file,
                               sep='\t',
                               index_col='#SampleID',
                               dtype={'#SampleID': 'string'})

        ordination = OrdinationResults.read(args.infile_coords)

        # the remote argument refers to where the support files will be located
        # relative to the plot itself i.e. index.html.
        emp = Emperor(ordination, metadata, remote='.')
        output_folder = args.outdir  # new folder where data will be saved

        # create an output directory
        os.makedirs(output_folder, exist_ok=True)

        with open(os.path.join(output_folder, 'index.html'), 'w') as f:
            f.write(emp.make_emperor(standalone=True))
            emp.copy_support_files(output_folder)
コード例 #14
0
ファイル: core.py プロジェクト: sjanssen2/empress
class Empress():
    def __init__(self,
                 tree,
                 table,
                 sample_metadata,
                 feature_metadata=None,
                 ordination=None,
                 ignore_missing_samples=False,
                 filter_missing_features=False,
                 resource_path=None,
                 filter_unobserved_features_from_phylogeny=True):
        """Visualize a phylogenetic tree

        Use this object to interactively display a phylogenetic tree using the
        Empress GUI.

        Parameters
        ----------
        tree: bp.Tree:
            The phylogenetic tree to visualize.
        table: pd.DataFrame:
            The matrix to visualize paired with the phylogenetic tree.
        sample_metadata: pd.DataFrame
            DataFrame object with the metadata associated to the samples in the
            ``ordination`` object, should have an index set and it should match
            the identifiers in the ``ordination`` object.
        feature_metadata: pd.DataFrame, optional
            DataFrame object with the metadata associated to the names of
            tips and/or internal nodes in the  ``tree`` object, should have an
            index set and it should match at least one of these nodes' names.
        ordination: skbio.OrdinationResults, optional
            Object containing the computed values for an ordination method in
            scikit-bio. Currently supports skbio.stats.ordination.PCoA and
            skbio.stats.ordination.RDA results.
        ignore_missing_samples: bool, optional (default False)
            If True, pads missing samples (i.e. samples in the table but not
            the metadata) with placeholder metadata. If False, raises a
            DataMatchingError if any such samples exist. (Note that in either
            case, samples in the metadata but not in the table are filtered
            out; and if no samples are shared between the table and metadata, a
            DataMatchingError is raised regardless.) This is analogous to the
            ignore_missing_samples flag in Emperor.
        filter_missing_features: bool, optional (default False)
            If True, filters features from the table that aren't present as
            tips in the tree. If False, raises a DataMatchingError if any such
            features exist. (Note that in either case, features in the tree but
            not in the table are preserved.)
        resource_path: str, optional
            Load the resources from a user-specified remote location. If set to
            None resources are loaded from the current directory.
        filter_unobserved_features_from_phylogeny: bool, optional
            If True, filters features from the phylogeny that aren't present as
            features in feature table. features in feature table. Otherwise,
            the phylogeny is not filtered.


        Attributes
        ----------
        tree:
            Phylogenetic tree.
        table:
            Contingency matrix for the phylogeny.
        samples:
            Sample metadata.
        features:
            Feature metadata.
        ordination:
            Ordination matrix to visualize simultaneously with the tree.
        base_url:
            Base path to the remote resources.
        """

        self.tree = tree
        self.table = table
        self.samples = sample_metadata.copy()

        if feature_metadata is not None:
            self.features = feature_metadata.copy()
        else:
            self.features = None

        self.ordination = ordination

        self.base_url = resource_path
        if self.base_url is None:
            self.base_url = './'

        self._validate_and_match_data(
            ignore_missing_samples, filter_missing_features,
            filter_unobserved_features_from_phylogeny)

        if self.ordination is not None:
            # Note that tip-level metadata is the only "feature metadata" we
            # send to Emperor, because internal nodes in the tree should not
            # correspond to features in the table (and thus to arrows in a
            # biplot).
            self._emperor = Emperor(
                self.ordination,
                mapping_file=self.samples,
                feature_mapping_file=self.tip_md,
                ignore_missing_samples=ignore_missing_samples,
                remote='./emperor-resources')
        else:
            self._emperor = None

    def _validate_and_match_data(self, ignore_missing_samples,
                                 filter_missing_features,
                                 filter_unobserved_features_from_phylogeny):
        # remove unobserved features from the phylogeny
        if filter_unobserved_features_from_phylogeny:
            self.tree = self.tree.shear(set(self.table.columns))

        # extract balance parenthesis
        self._bp_tree = list(self.tree.B)

        self.tree = Tree.from_tree(to_skbio_treenode(self.tree))
        fill_missing_node_names(self.tree)

        # Note that the feature_table we get from QIIME 2 (as an argument to
        # this function) is set up such that the index describes sample IDs and
        # the columns describe feature IDs. We transpose this table before
        # sending it to tools.match_inputs() and keep using the transposed
        # table for the rest of this visualizer.
        self.table, self.samples, self.tip_md, self.int_md = match_inputs(
            self.tree, self.table.T, self.samples, self.features,
            ignore_missing_samples, filter_missing_features)

    def copy_support_files(self, target=None):
        """Copies the support files to a target directory

        If an ordination is included Emperor's support files will also be
        copied over (in a directory named emperor-resources).

        Parameters
        ----------
        target : str
            The path where resources should be copied to. By default it copies
            the files to ``self.base_url``.
        """
        if target is None:
            target = self.base_url

        # copy the required resources
        copytree(SUPPORT_FILES, os.path.join(target, 'support_files'))

        if self._emperor is not None:
            self._emperor.copy_support_files(
                os.path.join(target, 'emperor-resources'))

    def __str__(self):
        return self.make_empress()

    def make_empress(self):
        """Build an empress plot

        Returns
        -------
        str
            Formatted empress plot.

        Notes
        -----
        Once you generate the plot (and write it to a HTML file in a given
        directory) you will need to copy the support files (the JS/CSS/etc.
        code needed to view the visualization) to the same directory by calling
        the ``copy_support_files`` method.

        See Also
        --------
        empress.core.Empress.copy_support_files
        """
        main_template = self._get_template()

        # _process_data does a lot of munging to the coordinates data and
        # _to_dict puts the data into a dictionary-like object for consumption
        data = self._to_dict()

        plot = main_template.render(data)

        return plot

    def _to_dict(self):
        """Convert processed data into a dictionary

        Returns
        -------
        dict
            A dictionary describing the plots contained in the ordination
            object and the sample + feature metadata.
        """

        # Compute coordinates resulting from layout algorithm(s)
        # TODO: figure out implications of screen size
        layout_to_coordsuffix, default_layout = self.tree.coords(4020, 4020)

        tree_data = {}
        names_to_keys = {}
        for i, node in enumerate(self.tree.postorder(include_self=True), 1):
            tree_data[i] = {
                'name': node.name,
                'color': [0.75, 0.75, 0.75],
                'sampVal': 1,
                'visible': True,
                'single_samp': False
            }
            # Add coordinate data from all layouts for this node
            for layoutsuffix in layout_to_coordsuffix.values():
                xcoord = "x" + layoutsuffix
                ycoord = "y" + layoutsuffix
                tree_data[i][xcoord] = getattr(node, xcoord)
                tree_data[i][ycoord] = getattr(node, ycoord)
            # Hack: it isn't mentioned above, but we need start pos info for
            # circular layout. The start pos for the other layouts is the
            # parent xy coordinates so we need only need to specify the start
            # for circular layout.
            tree_data[i]["xc0"] = node.xc0
            tree_data[i]["yc0"] = node.yc0

            # Also add vertical bar coordinate info for the rectangular layout,
            # and start point & arc coordinate info for the circular layout
            if not node.is_tip():
                tree_data[i]["highestchildyr"] = node.highest_child_yr
                tree_data[i]["lowestchildyr"] = node.lowest_child_yr
                if not node.is_root():
                    tree_data[i]["arcx0"] = node.arcx0
                    tree_data[i]["arcy0"] = node.arcy0
                    tree_data[i]["arcstartangle"] = node.highest_child_clangle
                    tree_data[i]["arcendangle"] = node.lowest_child_clangle

            if node.name in names_to_keys:
                names_to_keys[node.name].append(i)
            else:
                names_to_keys[node.name] = [i]

        names = []
        for node in self.tree.preorder(include_self=True):
            names.append(node.name)

        # Convert sample metadata to a JSON-esque format
        sample_data = self.samples.to_dict(orient='index')

        # Convert feature metadata, similarly to how we handle sample metadata.
        # If the user passed in feature metadata, self.features won't be None.
        # (We don't actually use any data from self.features at this point in
        # the program since it hasn't had taxonomy splitting / matching / etc.
        # done.)
        if self.features is not None:
            # If we're in this block, we know that self.tip_md and self.int_md
            # are both DataFrames. They have identical columns, so we can just
            # use self.tip_md.columns when setting feature_metadata_columns.
            # (We don't use self.features.columns because stuff like taxonomy
            # splitting will have changed the columns from what they initially
            # were in some cases.)
            feature_metadata_columns = list(self.tip_md.columns)
            # Calling .to_dict() on an empty DataFrame just gives you {}, so
            # this is safe even if there is no tip or internal node metadata.
            # (...At least one of these DFs should be populated, though, since
            # none of the feature IDs matching up would have caused an error.)
            tip_md_json = self.tip_md.to_dict(orient='index')
            int_md_json = self.int_md.to_dict(orient='index')
        else:
            feature_metadata_columns = []
            tip_md_json = {}
            int_md_json = {}

        # TODO: Empress is currently storing all metadata as strings. This is
        # memory intensive and won't scale well. We should convert all numeric
        # data/compress metadata.

        # This is used in biom-table. Currently this is only used to ignore
        # null data (i.e. NaN and "unknown") and also determines sorting order.
        # The original intent is to signal what columns are
        # discrete/continuous. type of sample metadata (n - number, o - object)
        sample_data_type = self.samples.dtypes.to_dict()
        sample_data_type = {
            k: 'n' if pd.api.types.is_numeric_dtype(v) else 'o'
            for k, v in sample_data_type.items()
        }

        # create a mapping of observation ids and the samples that contain them
        obs_data = {}
        feature_table = (self.table > 0)
        for _, series in feature_table.iteritems():
            sample_ids = series[series].index.tolist()
            obs_data[series.name] = sample_ids

        data_to_render = {
            'base_url': './support_files',
            'tree': self._bp_tree,
            'tree_data': tree_data,
            'names_to_keys': names_to_keys,
            'sample_data': sample_data,
            'sample_data_type': sample_data_type,
            'tip_metadata': tip_md_json,
            'int_metadata': int_md_json,
            'feature_metadata_columns': feature_metadata_columns,
            'obs_data': obs_data,
            'names': names,
            'layout_to_coordsuffix': layout_to_coordsuffix,
            'default_layout': default_layout,
            'emperor_div': '',
            'emperor_require_logic': '',
            'emperor_style': '',
            'emperor_base_dependencies': '',
            'emperor_classes': ''
        }

        if self._emperor is not None:
            data_to_render.update(self._scavenge_emperor())

        return data_to_render

    def _get_template(self, standalone=False):
        """Get the jinja template object

        Parameters
        ----------
        standalone: bool, optional
            Whether or not the generated plot will load resources locally
            (``True``), or from a specified URL (``False``).

        Returns
        -------
        jinja2.Template
            Template where the plot is created.
        """

        # based on: http://stackoverflow.com/a/6196098
        env = Environment(loader=FileSystemLoader(TEMPLATES))
        return env.get_template('empress-template.html')

    def _scavenge_emperor(self):
        # can't make this 50vw because one of the plot containers has some
        # padding that makes the divs stack on top of each other
        self._emperor.width = '48vw'
        self._emperor.height = '100vh; float: right'

        # make the background white so it matches Empress
        self._emperor.set_background_color('white')
        self._emperor.set_axes(color='black')

        html = self._emperor.make_emperor(standalone=True)
        html = html.split('\n')

        # The following line references will be replace with API calls to the
        # Emperor object, however those are not implemented yet
        emperor_base_dependencies = html[6]

        # line 14 is where the CSS includes start, but it is surrounded by
        # unnecessary tags so we strip those out
        style = '\n'.join([
            line.strip().replace("'", '').replace(',', '')
            for line in html[14:20]
        ])

        # main divs for emperor
        emperor_div = '\n'.join(html[39:44])

        # main js script for emperor
        emperor_require_logic = '\n'.join(html[45:-3])

        # once everything is loaded replace the callback tag for custom JS
        with open(SELECTION_CALLBACK_PATH) as f:
            selection_callback = f.read()
        emperor_require_logic = emperor_require_logic.replace(
            '/*__select_callback__*/', selection_callback)

        emperor_data = {
            'emperor_div': emperor_div,
            'emperor_require_logic': emperor_require_logic,
            'emperor_style': style,
            'emperor_base_dependencies': emperor_base_dependencies,
            'emperor_classes': 'combined-plot-container'
        }

        return emperor_data