コード例 #1
0
def build_network(sess, compute_graph, net_config):
    """Build the MDRNN."""
    empi_mdrnn.MODEL_DIR = "./models/"
    K.set_session(sess)
    with compute_graph.as_default():
        net = empi_mdrnn.PredictiveMusicMDRNN(mode=empi_mdrnn.NET_MODE_RUN,
                                              dimension=net_config.dimension,
                                              n_hidden_units=net_config.units,
                                              n_mixtures=net_config.mixes,
                                              layers=net_config.layers)
        #net.pi_temp = net_config.pi_temp
        #net.sigma_temp = net_config.sigmatemp
    print("MDRNN Loaded.")
    return net
コード例 #2
0
def build_network(sess):
    """Build the MDRNN."""
    empi_mdrnn.MODEL_DIR = "./models/"
    K.set_session(sess)
    with compute_graph.as_default():
        net = empi_mdrnn.PredictiveMusicMDRNN(mode=empi_mdrnn.NET_MODE_RUN,
                                              dimension=args.dimension,
                                              n_hidden_units=mdrnn_units,
                                              n_mixtures=mdrnn_mixes,
                                              layers=mdrnn_layers)
        net.pi_temp = args.pitemp
        net.sigma_temp = args.sigmatemp
    print("MDRNN Loaded:", net.model_name())
    return net
コード例 #3
0
ファイル: run_rnn_box.py プロジェクト: cpmpercussion/empi
# ## Load the Model
compute_graph = tf.Graph()
with compute_graph.as_default():
    sess = tf.Session()

# Hyperparameters
units = 128
mixes = 5
layers = 2
empi_mdrnn.MODEL_DIR = "./models/"
model_file = "./models/empi_mdrnn-layers2-units128-mixtures5-scale10-E84-VL-3.68.hdf5"
# Instantiate Running Network
K.set_session(sess)
with compute_graph.as_default():
    net = empi_mdrnn.PredictiveMusicMDRNN(mode=empi_mdrnn.NET_MODE_RUN,
                                          n_hidden_units=units,
                                          n_mixtures=mixes,
                                          layers=layers)
    net.load_model(model_file=model_file)
    net.pi_temp = 1.0
    net.sigma_temp = 0.0
print("RNN Loaded.")
rnn_output_buffer = queue.Queue()
writing_queue = queue.Queue()
# Touch storage for RNN.
last_rnn_touch = empi_mdrnn.random_sample()  # prepare previos sample.
last_user_touch = empi_mdrnn.random_sample()
last_user_interaction = time.time()
CALL_RESPONSE_THRESHOLD = 2.0
call_response_mode = 'call'
# Interaction Loop Parameters
# All set to false before setting is chosen.