def test_iteration_end_event(): space = ParameterSpace([ContinuousParameter('x', 0, 1)]) def user_function(x): return x x_test = np.linspace(0, 1)[:, None] y_test = user_function(x_test) x_init = np.linspace(0, 1, 5)[:, None] y_init = user_function(x_init) gpy_model = GPy.models.GPRegression(x_init, y_init) model = GPyModelWrapper(gpy_model) mse = [] def compute_mse(self, loop_state): mse.append(np.mean(np.square(model.predict(x_test)[0] - y_test))) loop_state = create_loop_state(x_init, y_init) acquisition = ModelVariance(model) acquisition_optimizer = AcquisitionOptimizer(space) candidate_point_calculator = SequentialPointCalculator( acquisition, acquisition_optimizer) model_updater = FixedIntervalUpdater(model) loop = OuterLoop(candidate_point_calculator, model_updater, loop_state) loop.iteration_end_event.append(compute_mse) loop.run_loop(user_function, 5) assert len(mse) == 5
def test_multi_source_batch_experimental_design(): objective, space = multi_fidelity_forrester_function() # Create initial data random_design = RandomDesign(space) x_init = random_design.get_samples(10) intiial_results = objective.evaluate(x_init) y_init = np.array([res.Y for res in intiial_results]) # Create multi source acquisition optimizer acquisition_optimizer = GradientAcquisitionOptimizer(space) multi_source_acquisition_optimizer = MultiSourceAcquisitionOptimizer( acquisition_optimizer, space) # Create GP model gpy_model = GPy.models.GPRegression(x_init, y_init) model = GPyModelWrapper(gpy_model) # Create acquisition acquisition = ModelVariance(model) # Create batch candidate point calculator batch_candidate_point_calculator = GreedyBatchPointCalculator( model, acquisition, multi_source_acquisition_optimizer, batch_size=5) initial_loop_state = LoopState(intiial_results) loop = OuterLoop(batch_candidate_point_calculator, FixedIntervalUpdater(model, 1), initial_loop_state) loop.run_loop(objective, 10) assert loop.loop_state.X.shape[0] == 60
def test_loop(): n_iterations = 5 x_init = np.random.rand(5, 1) y_init = np.random.rand(5, 1) # Make GPy model gpy_model = GPy.models.GPRegression(x_init, y_init) model = GPyModelWrapper(gpy_model) space = ParameterSpace([ContinuousParameter('x', 0, 1)]) acquisition = ModelVariance(model) # Make loop and collect points exp_design = ExperimentalDesignLoop(space, model, acquisition) exp_design.run_loop(UserFunctionWrapper(f), FixedIterationsStoppingCondition(n_iterations)) # Check we got the correct number of points assert exp_design.loop_state.X.shape[0] == 10
def model_variance_acquisition(gpy_model): return ModelVariance(gpy_model)
def test_model_variance_with_gradients(model): acquisition = ModelVariance(model) acquisition_value, acquisition_gradients = acquisition.evaluate_with_gradients(np.zeros((1, 2))) assert(np.isclose(acquisition_value, 0.5)) assert(np.all(np.isclose(acquisition_gradients, 2*np.ones((1, 2)))))
def test_model_variance(model): acquisition = ModelVariance(model) acquisition_value = acquisition.evaluate(np.zeros((1, 2))) assert(np.isclose(acquisition_value, 0.5))