コード例 #1
0
def test_gauss_measure_invalid_mean_raises():
    mean_wrong_shape = np.ones([3, 1])
    with pytest.raises(ValueError):
        GaussianMeasure(mean=mean_wrong_shape, variance=1.0)

    mean_wrong_type = 0.0
    with pytest.raises(TypeError):
        GaussianMeasure(mean=mean_wrong_type, variance=1.0)
コード例 #2
0
class DataGaussMeasure:
    D = 2
    mean = np.array([0, 0.8])
    variance = np.array([0.2, 1.4])
    measure = GaussianMeasure(mean=mean, variance=variance)
    dat_bounds = [(m - 2 * np.sqrt(v), m + 2 * np.sqrt(v)) for m, v in zip(mean, variance)]
    reasonable_box_bounds = [(m - 10 * np.sqrt(v), m + 10 * np.sqrt(v)) for m, v in zip(mean, variance)]
コード例 #3
0
class DataGaussIsoMeasure:
    D = 2
    mean = np.array([0, 0.8])
    variance = 0.6
    measure = GaussianMeasure(mean=mean, variance=variance)
    dat_bounds = [(m - 2 * np.sqrt(0.6), m + 2 * np.sqrt(0.6)) for m in mean]
    reasonable_box_bounds = [(m - 10 * np.sqrt(0.6), m + 10 * np.sqrt(0.6)) for m in mean]
コード例 #4
0
def model_gaussian(gpy_model):
    X, Y = gpy_model.X, gpy_model.Y
    measure = GaussianMeasure(mean=np.arange(gpy_model.X.shape[1]),
                              variance=np.linspace(0.2, 1.5, X.shape[1]))
    qrbf = QuadratureRBFGaussianMeasure(RBFGPy(gpy_model.kern),
                                        measure=measure)
    basegp = BaseGaussianProcessGPy(kern=qrbf, gpy_model=gpy_model)
    return VanillaBayesianQuadrature(base_gp=basegp,
                                     X=gpy_model.X,
                                     Y=gpy_model.Y)
コード例 #5
0
ファイル: test_wsabil_loop.py プロジェクト: EmuKit/emukit
def base_gp_data():
    X = np.array([[-1, 1], [0, 0], [-2, 0.1]])
    Y = np.array([[1], [2], [3]])
    gpy_model = GPy.models.GPRegression(
        X=X, Y=Y, kernel=GPy.kern.RBF(input_dim=X.shape[1]))
    measure = GaussianMeasure(mean=np.array([0.1, 1.8]), variance=0.8)
    qrbf = QuadratureRBFGaussianMeasure(RBFGPy(gpy_model.kern),
                                        measure=measure)
    base_gp = BaseGaussianProcessGPy(kern=qrbf, gpy_model=gpy_model)
    return base_gp, X, Y
コード例 #6
0
def test_gauss_measure_invalid_variance_raises(wrong_input):
    mean, var_wrong_value = wrong_input
    with pytest.raises(ValueError):
        GaussianMeasure(mean=mean, variance=var_wrong_value)
コード例 #7
0
def get_gaussian_qrbf():
    dat = DataGaussianSpread()
    measure = GaussianMeasure(mean=dat.measure_mean, variance=dat.measure_var)
    qkern = QuadratureRBFGaussianMeasure(EmukitRBF().kern, measure=measure)
    return qkern, dat
コード例 #8
0
def get_base_gp():
    gpy_model, dat = get_gpy_model()
    measure = GaussianMeasure(mean=dat.measure_mean, variance=dat.measure_var)
    qrbf = QuadratureRBFGaussianMeasure(RBFGPy(gpy_model.kern),
                                        measure=measure)
    return BaseGaussianProcessGPy(kern=qrbf, gpy_model=gpy_model), dat
コード例 #9
0
def measure_gaussian(n_dim: int):
    return GaussianMeasure(mean=np.ones(n_dim), variance=1.0)