コード例 #1
0
 def __init__(self, num_layers=12, model_dim=512, num_heads=8, ffn_dim=2048, transformer_layer=12, dropout=0.0):
     super(transformer, self).__init__()
     self.CLS = nn.Parameter(torch.FloatTensor(6, model_dim))
     self.SEP = nn.Parameter(torch.FloatTensor(1, model_dim))
     self.enc = encoder(num_layers, model_dim, num_heads, ffn_dim, dropout)
     self.linear = nn.Linear(model_dim, 5, bias=False)
     # self.sigmoid = nn.Sigmoid()
     ## fit for Multimodal-Transformer
     self.output_linear = nn.Linear(5, 1, bias=False)
コード例 #2
0
def main():
    # load dataset
    df = pd.read_csv('movies_metadata.csv')
    df = df.loc[:, ['title', 'genres', 'overview']]
    df = df[pd.notnull(df.overview)]
    df = df[pd.notnull(df.title)]
    df = df[pd.notnull(df.genres)]

    # Training parameters
    max_len_desc = 300
    max_len_title = 50
    max_input_len = max_len_title + max_len_desc
    genres_to_be_predicted = [
        'Drama', 'Comedy', 'Documentary', 'Science Fiction', 'Romance'
    ]

    num_classes = len(genres_to_be_predicted)

    params = {
        'GENRES': genres_to_be_predicted,
        'VOCABULARY_SIZE': 20000,
        'EMBEDDING_DIM': 100,
        'MAX_LEN_DESC': max_len_desc,
        'MAX_LEN_TITLE': max_len_title,
        'INPUT_LEN': max_input_len,
        'NUM_DENSE_1': 512,
        'NUM_CLASSES': num_classes,
        'NUM_EPOCHS': 4,
        'BATCH_DIM': 64
    }

    # init custom classes
    p = preprocessor(genres=params['GENRES'])
    e = encoder(max_words=params['VOCABULARY_SIZE'],
                maxlen_desc=params['MAX_LEN_DESC'],
                maxlen_title=params['MAX_LEN_TITLE'])
    m = model_classifier()

    # prepare data for training
    df = p.preprocess(df)
    X, y = e.encode(df)
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.30,
                                                        random_state=1000)
    e.save()

    # create and train model
    model = m.define_model(params)
    history = m.train_model(X_train, X_test, y_train, y_test)

    # save
    m.save_model()
    m.save_params()
コード例 #3
0
def lancer():
    if var_demo.get() == 0:
        if var_mode.get() == "encode":
            if var_choix.get() == "fichier":
                valeur = entre_file.get()
            elif var_choix.get() == "texte":
                valeur = var_texte.get()
            encoder(var_choix.get(), valeur, var_save.get())
        else:
            valeur = entre_file.get()
            if var_correc.get() == 0:
                decoder(valeur, var_save.get(), True)
            else:
                print("sans correection")
                decoder(valeur, var_save.get(), False)
    else:
        valeur = entre_texte_demo.get()
        temps, s_bytes, s_trit1, len_Trit, nb0, s_trit3, s_trit4, s_dna, dicoDebut, dicoReverse, dicoI3, ID, dicoP, dicoIX, dicoIX_dna, dicoFinal, s_dna_final = encoder(
            "texte", valeur, var_save.get())

        var_afficher = afficherEncodage(valeur, temps, s_bytes, s_trit1,
                                        len_Trit, nb0, s_trit3, s_trit4, s_dna,
                                        dicoDebut, dicoReverse, dicoI3, ID,
                                        dicoP, dicoIX, dicoIX_dna, dicoFinal,
                                        s_dna_final)
        fenetre_demo = Tk()
        fenetre_demo.title(
            "Démonstration de l'encodage d'un texte vers de l'ADN")

        barre = Scrollbar(fenetre_demo)
        label_demo = Text(fenetre_demo, yscrollcommand=barre.set)

        barre.config(command=label_demo.yview)
        barre.pack(side="right", fill='y')
        label_demo.pack(expand=1, fill="both")
        label_demo.insert(0.0, var_afficher)
コード例 #4
0
ファイル: test.py プロジェクト: AbdouKhadir/Res209_C2W
joindre_salon_ok["seq"]=1
joindre_salon_ok["Type"]=11

joindre_salon_nok={}
joindre_salon_nok["taille"]=125
joindre_salon_nok["seq"]=1
joindre_salon_nok["Type"]=12

ack={}
ack["taille"]=125
ack["seq"]=1
ack["Type"]=63

print("---------- TEST TYPE 1 ----------\n")
print(inscription)
test1=encode.encoder(inscription)
print("\n{0}\n".format(test1))
test1bis=decode.decoder(test1)
print(test1bis)
print("\n---------- TEST TYPE 2 ----------\n")
print(film)
test2=encode.encoder(film)
print("\n{0}\n".format(test2))
test2bis=decode.decoder(test2)
print(test2bis)
print("\n---------- TEST TYPE 3 ----------\n")
print(user)
test3=encode.encoder(user)
print("\n{0}\n".format(test3))
test3bis=decode.decoder(test3)
print(test3bis)
コード例 #5
0
from decode import decoder
from encode import encoder
f1 = open("file1.txt", 'wb')
f2 = open("file2.txt", 'wb')
str1 = encoder('godofwarpauplatinapaunotoba')
str2 = encoder('godofwarpalplatinapaunotoba')

f1.write(str1.encode('utf8'))
f2.write(str2.encode('utf8'))
f1.close()
f2.close()
コード例 #6
0
ファイル: main.py プロジェクト: plsdlr/barkerlang
mem_size = 99
#code = open("/Users/paul/xenotations_first.txt", "r")


def load_from_fime(path):
    code = open(path, "r")
    c = code.readlines()
    clean_code = list(map(lambda x: x.rstrip(), c))
    return clean_code


logging.info("INIT STACK")
new_stack = stack()
logging.info("INIT PARSER")
new_decoder = parser()
new_encoder = encoder()

if args.path:
    logging.info("LOAD CODE")
    clean_code = load_from_fime(args.path)
else:
    logging.error("No Input Specification")
    exit()

logging.info("INIT MEMORY")
new_mem = pointer(clean_code, mem_size)
new_interp = interpreter(new_decoder, new_stack, new_encoder, new_mem)

logging.info("START EXECUTION")

while True:
コード例 #7
0
from decode import decoder
from encode import encoder

assert decoder(encoder("alodicksiano")) == "alodicksiano"
assert decoder(encoder("alodicksiano")) == "alodicksiano"
assert decoder(encoder("alodicksiano")) == "alodicksiano"
assert decoder(encoder("123456789 123456789 123456789 123456789")
               ) == "123456789 123456789 123456789 123456789"
コード例 #8
0
        Entry(self, textvariable=self.keyheight, width=40).grid(row=5, column=1, sticky='W')


        self.keywidth = StringVar()
        Label(self, text="照片的宽(pixel):").grid(row=6, sticky='W', pady=5)
        Entry(self, textvariable=self.keywidth, width=40).grid(row=6, column=1, sticky='W')

        def xz():
            filename = tkinter.filedialog.askopenfilename()
            if filename != '':
                Label(self, text=filename).grid(row=7, column=1, sticky='w')
                self.filename_in=filename
        def xz2():
            filename = tkinter.filedialog.asksaveasfilename()
            if filename != '':
                Label(self, text=filename).grid(row=8, column=1, sticky='w')
                self.filename_out=filename

        

        Label(self, text="输入文件夹:").grid(row=7, column=0, sticky='W', pady=5)
        Button(self, text=" ... ", command=xz).grid(row=7, column=2, sticky='W', padx=2)


        Label(self, text="输出文件夹:").grid(row=8, column=0, sticky='W', pady=5)
        Button(self, text=" ... ", command=xz2).grid(row=8, column=2, sticky='W', padx=2)
        Button(self,text='确定',width=5,height=2, command=self.quit).grid(row=14,column=1,sticky='W',padx=100)
app = Application()
app.mainloop()
en.encoder(app.filename_in,"output.mp4",int(app.interval.get()),int(app.keywidth.get()),int(app.keyheight.get()))