コード例 #1
0
ファイル: views.py プロジェクト: saliiima/SimuLDPC
def bec(request): 
    ber = {}   
    if request.method == "POST":
        form = InputFormBEC(request.POST, request.FILES) 
        if form.is_valid():
            p = form.cleaned_data.get("p")
            img = form.cleaned_data.get("img")
            img = Image.open(img).convert('L')
            img.save("./media/figs/input.png")

            data = np.array(img, dtype = np.uint8)
            np.save("./media/figs/input.npy", data/255)
            encode.main(data)
            ber = becDecode.main(p)                       

    else:
        img = Image.open("./media/figs/plain.jpeg")
        img.save("./media/figs/input.png")
        img.save("./media/figs/output.png")
        form = InputFormBEC()

    return render(request,
                  'main/bec.html',
                  context={"form": InputFormBEC,
                            "ber": ber})
コード例 #2
0
ファイル: views.py プロジェクト: saliiima/SimuLDPC
def awgn(request): 
    ber = {}   
    if request.method == "POST":
        form = InputFormAWGN(request.POST, request.FILES) 
        if form.is_valid():
            snr = form.cleaned_data.get("snr")
            img = form.cleaned_data.get("img")
            algo = form.cleaned_data.get("select")
            img = Image.open(img).convert('L')
            img.save("./media/figs/input.png")

            data = np.array(img, dtype = np.uint8)
            np.save("./media/figs/input.npy", data/255)
            encode.main(data)
            ber = awgnDecode.main(snr, algo)                      

    else:
        img = Image.open("./media/figs/plain.jpeg")
        img.save("./media/figs/input.png")
        img.save("./media/figs/output.png")
        form = InputFormAWGN()

    return render(request,
                  'main/awgn.html',
                  context={"form": InputFormAWGN,
                            "ber": ber})
コード例 #3
0
def main(top_dir, max_sequences, nr_bars, bar_len, max_seq_len):
        # original midi files
    orig_dir = os.path.join(top_dir, '1orig')
    orig_dir_glob = os.path.join(orig_dir, "*.mid")
    
    # contains 4/4 only midis
    four_four_dir = os.path.join(top_dir, "2_fourfour")
    if not os.path.exists(four_four_dir):
        os.mkdir(four_four_dir)
    
    # contains the transposed midi files
    transposed_dir = os.path.join(
        top_dir, "3_transposed")
    if not os.path.exists(transposed_dir):
        os.mkdir(transposed_dir)

    # contains the transposed, monophonic melodies files
    monophonic_dir = os.path.join(
        top_dir, "4_mono"
    )
    if not os.path.exists(monophonic_dir):
        os.mkdir(monophonic_dir)

    # 100 random files to be used in evaluation
    comparison_dir = os.path.join(top_dir, "7_comparison")
    if not os.path.exists(comparison_dir):
        os.mkdir(comparison_dir)

    # contains the transposed, split, magenta one hot encoded dataset
    # as a big mmap file
    magenta_dir = os.path.join(top_dir, "5_encoded")
    if not os.path.exists(magenta_dir):
        os.mkdir(magenta_dir)

    pianoroll_dir = os.path.join(top_dir, "6_pianoroll")
    if not os.path.exists(pianoroll_dir):
        os.mkdir(pianoroll_dir)

    magenta_dataset_file = os.path.join(top_dir, "dataset.dat")

    pianoroll_dataset_file = os.path.join(top_dir, "pianoroll.dat")

    # FILTER TO 4/4 ONLY
    four_four_dir_files = glob(os.path.join(four_four_dir, "*.mid"))
    if len(four_four_dir_files) == 0:
        orig_files = glob(orig_dir_glob)
        filter_four_four.main(orig_files, four_four_dir)
    else:
        print('skipping filtering to 4/4 as directory %s is not empty' %
              four_four_dir)

    # TRANSPOSE THE 4/4 MIDI FILES
    transposed_files = glob(os.path.join(transposed_dir, "*.mid"))
    if len(transposed_files) == 0:
        transpose.main(
            glob(os.path.join(four_four_dir, "*.mid")),
            transposed_dir
                )
    else:
        print("skipping transposing as %s is not empty" % transposed_dir)
    
    # monophonize
    mono_files = glob(os.path.join(monophonic_dir, "*.mid"))
    if len(mono_files) == 0:
        monophonize.main(
            glob(os.path.join(transposed_dir, "*.mid")),
            monophonic_dir
                )
    else:
        print("skipping monophonize as %s is not empty" % monophonic_dir)

    # choose 100 random samples, take first 4 bars
    mono_files = glob(os.path.join(monophonic_dir, "*.mid"))
    comparisons.main(
        mono_files,
        comparison_dir
    )

    encoder = None
    min_note = None
    max_note = None
    # ENCODING AND SPLITTING THE TRANSPOSED MIDIs INTO MAGENTA FORMAT AND THEN
    # CREATING ONE BIG MMAP FILE OF ONE-HOT ENCODED SEQUENCES
    if len(glob(os.path.join(magenta_dir, '*.npy'))) == 0:
        encoder = encode.main(
            glob(os.path.join(monophonic_dir, "*.mid")),
            magenta_dir,
            nr_bars,
            max_seq_len,
            bar_len
        )
    else:
        print('skipping encoding into melody as directory %s was not empty' %magenta_dir)
    min_note, max_note = np.load(os.path.join(top_dir, 'min_max.npy'))
    encoder = MelodyOneHotEncoding(min_note, max_note+1)

    if not os.path.exists(magenta_dataset_file): # dat file doesnt exist
        encode.dat_file(
            glob(os.path.join(magenta_dir, "*.npy")),
            max_sequences,
            magenta_dataset_file,
            max_seq_len,
            encoder
        )
        print('dataset at ', magenta_dataset_file)
    else:
        print('skipping creating dataset file as %s exists' %(magenta_dataset_file))

    ## encode into pianoroll
    if len(glob(os.path.join(pianoroll_dir, "*.npy"))) == 0:
        encode_pianoroll.main(
            glob(os.path.join(monophonic_dir, "*.mid")),
            pianoroll_dir,
            nr_bars,
            max_seq_len,
            bar_len,
            min_note,
            max_note
        )
    else:
        print('skipping encoding into pianoroll as directory %s was not empty' %pianoroll_dir)

    if not os.path.exists(pianoroll_dataset_file): # dat file doesnt exist
        encode_pianoroll.dat_file(
            glob(os.path.join(pianoroll_dir, "*.npy")),
            max_sequences,
            pianoroll_dataset_file,
            max_seq_len,
            min_note,
            max_note
        )
        print('dataset at ', pianoroll_dataset_file)
    else:
        print('skipping creating dataset file as %s exists' %(pianoroll_dataset_file))
コード例 #4
0
ファイル: app.py プロジェクト: pseudoidris/steg
def save_message(msg):

    encode.main()
コード例 #5
0
    landmarks_model_path = unpack_bz2(get_file('shape_predictor_68_face_landmarks.dat.bz2',
                                               LANDMARKS_MODEL_URL, cache_subdir='temp'))
    RAW_IMAGES_DIR = './raw_images'
    ALIGNED_IMAGES_DIR = './aligned_images'

    landmarks_detector = LandmarksDetector(landmarks_model_path)
    for img_name in os.listdir(RAW_IMAGES_DIR):
        print('Aligning %s ...' % img_name)
        try:
            raw_img_path = os.path.join(RAW_IMAGES_DIR, img_name)
            fn = face_img_name = '%s_%02d.png' % (os.path.splitext(img_name)[0], 1)
            if os.path.isfile(fn):
                continue
            print('Getting landmarks...')
            for i, face_landmarks in enumerate(landmarks_detector.get_landmarks(raw_img_path), start=1):
                try:
                    print('Starting face alignment...')
                    face_img_name = '%s_%02d.png' % (os.path.splitext(img_name)[0], i)
                    aligned_face_path = os.path.join(ALIGNED_IMAGES_DIR, face_img_name)
                    image_align(raw_img_path, aligned_face_path, face_landmarks, output_size=1024, x_scale=1, y_scale=1, em_scale=0.1, alpha=False)
                    print('Wrote result %s' % aligned_face_path)
                except:
                    print("Exception in face alignment!")
        except:
            print("Exception in landmark detection!")



if __name__ == "__main__":
    main()
コード例 #6
0
def main():
    try:
        #Upload images
        uploaded_file = st.file_uploader("Choose a picture",
                                         type=['jpg', 'png'])
        if uploaded_file is not None:
            st.image(uploaded_file, width=200)
        second_uploaded_file = st.file_uploader("Choose another picture",
                                                type=['jpg', 'png'])
        if second_uploaded_file is not None:
            st.image(second_uploaded_file, width=200)

        img1 = PIL.Image.open(uploaded_file)
        # wpercent = (256/float(img1.size[0]))
        # hsize = int((float(img1.size[1])*float(wpercent)))
        # img1 = img1.resize((256,hsize), PIL.Image.LANCZOS)
        img2 = PIL.Image.open(second_uploaded_file)
        # wpercent = (256/float(img2.size[0]))
        # hsize = int((float(img2.size[1])*float(wpercent)))
        # img2 = img2.resize((256,hsize), PIL.Image.LANCZOS)

        images = [img1, img2]

        # load the StyleGAN model into Colab
        URL_FFHQ = 'https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ'
        tflib.init_tf()
        with dnnlib.util.open_url(URL_FFHQ, cache_dir=config.cache_dir) as f:
            generator_network, discriminator_network, Gs_network = pickle.load(
                f)
        # load the latents
        s1 = np.load('lrs/176557_10150108810979851_7868129_o_01_01.npy')
        s2 = np.load('lrs/IMG_2482_01_01.npy')
        s1 = np.expand_dims(s1, axis=0)
        s2 = np.expand_dims(s2, axis=0)
        # combine the latents somehow... let's try an average:

        x = st.slider('picture 1', 0.01, 0.9, 0.5)
        y = st.slider('picture 2', 0.01, 0.9, 0.5)
        savg = (x * s1 + y * s2)

        # run the generator network to render the latents:
        synthesis_kwargs = dict(output_transform=dict(
            func=tflib.convert_images_to_uint8, nchw_to_nhwc=False),
                                minibatch_size=8)
        images = Gs_network.components.synthesis.run(savg,
                                                     randomize_noise=False,
                                                     **synthesis_kwargs)

        for image in images:
            st.image(
                (PIL.Image.fromarray(images.transpose((0, 2, 3, 1))[0],
                                     'RGB').resize((512, 512),
                                                   PIL.Image.LANCZOS)))

        # if st.button('Align Images'):
        #     align(images)

        if st.button('Encode Images'):
            main(images)

        for image in images:
            st.image(image, width=200)
    except:
        pass
コード例 #7
0
def main():
    for i in range(1, 4):
        num_collection = str(i)
        code_builder.main(num_collection)
        encode.main(num_collection)
        decode.main(num_collection)
コード例 #8
0
 def encrypt(self):
     self.E1.delete("1.0", "end-1c")
     encode.main()
     messagebox.showinfo("Congrats", "Encryption Done")
     os.remove("Encryptedmsg.txt")