コード例 #1
0
    def make_features(self, df_train_input, df_test_input):
        df_train_features = pd.DataFrame()
        df_test_features = pd.DataFrame()

        folds_train = self._download_from_gs(
            feather_file_name="StratifiedGroupKFold_training.ftr")

        category_columns = [
            "language",
            "engaged_user_id",
            "engaging_user_id",
        ]

        target_columns = [
            "reply_engagement",
            "retweet_engagement",
            "retweet_with_comment_engagement",
            "like_engagement",
        ]

        for target_col in target_columns:
            print(f'============= {target_col} =============')

            # Get folds
            folds_col = [
                "StratifiedGroupKFold_retweet_with_comment_engagement"
            ]
            assert len(folds_col) == 1, "The number of fold column must be one"
            folds = folds_train[folds_col]
            n_fold = folds.max().values[0] + 1
            folds_ids = []

            for i in range(n_fold):
                trn_idx = folds[folds != i].dropna().index
                val_idx = folds[folds == i].dropna().index
                folds_ids.append((trn_idx, val_idx))
                print(f"{i+1}fold: n_trn={len(trn_idx)}, n_val={len(val_idx)}")

            for cat_col in category_columns:
                count = df_train_input[cat_col].value_counts()
                unseen_cat_list = count[count < THREASHOLD].index.tolist()
                df_train_input_cp = df_train_input.copy()
                df_train_input_cp.loc[
                    df_train_input_cp[cat_col].isin(unseen_cat_list),
                    target_col] = np.nan
                print(target_col, cat_col, len(count), len(unseen_cat_list))

                train_result, test_result = target_encoding(
                    cat_col, df_train_input_cp, df_test_input, target_col,
                    folds_ids)
                #df_train_input.drop(columns=[f"{cat_col}_ta"], inplace=True)
                #df_test_input.drop(columns=[f"{cat_col}_ta"], inplace=True)
                df_train_features[f"{target_col}__{cat_col}"] = train_result
                df_test_features[f"{target_col}__{cat_col}"] = test_result

        print(df_train_features.isnull().sum())
        print(df_test_features.isnull().sum())
        return df_train_features, df_test_features
コード例 #2
0
    def make_features(self, df_train_input, df_test_input):
        df_train_features = pd.DataFrame()
        df_test_features = pd.DataFrame()

        folds_train = self._download_from_gs(
            feather_file_name="StratifiedGroupKFold_training.ftr")

        category_columns = [
            "language",
            "engaged_user_id",
            "engaging_user_id",
        ]

        target_columns = [
            "reply_engagement",
            "retweet_engagement",
            "retweet_with_comment_engagement",
            "like_engagement",
        ]

        for target_col in target_columns:
            print(f'============= {target_col} =============')

            # Get folds
            folds_col = [
                "StratifiedGroupKFold_retweet_with_comment_engagement"
            ]
            assert len(folds_col) == 1, "The number of fold column must be one"
            folds = folds_train[folds_col]
            n_fold = folds.max().values[0] + 1
            folds_ids = []

            for i in range(n_fold):
                trn_idx = folds[folds != i].dropna().index
                val_idx = folds[folds == i].dropna().index
                folds_ids.append((trn_idx, val_idx))
                print(f"{i+1}fold: n_trn={len(trn_idx)}, n_val={len(val_idx)}")

            for cat_col in category_columns:
                train_result, test_result = target_encoding(
                    cat_col, df_train_input, df_test_input, target_col,
                    folds_ids)
                df_train_input.drop(columns=[f"{cat_col}_ta"], inplace=True)
                df_test_input.drop(columns=[f"{cat_col}_ta"], inplace=True)
                df_train_features[f"{target_col}__{cat_col}"] = train_result
                df_test_features[f"{target_col}__{cat_col}"] = test_result

        return df_train_features, df_test_features
コード例 #3
0
    def make_features(self, df_train_input, df_test_input):
        df_train_input = self._read_features_from_bigquery(self.train_table)
        df_test_input = self._read_features_from_bigquery(self.test_table)

        df_train_features = pd.DataFrame()
        df_test_features = pd.DataFrame()

        folds_train = self._download_from_gs(
            feather_file_name="TimeGroupKFold_training.ftr")

        category_columns = [
            "engaging_user_id",
        ]

        target_columns = [
            "diff_time",
        ]

        for target_col in target_columns:
            print(f'============= {target_col} =============')

            # Get folds
            folds_col = ["TimeGroupKFold_val_position"]
            assert len(folds_col) == 1, "The number of fold column must be one"
            folds = folds_train[folds_col]
            n_fold = folds.max().values[0] + 1
            folds_ids = []

            for i in range(n_fold):
                trn_idx = folds[folds != i].dropna().index
                val_idx = folds[folds == i].dropna().index
                folds_ids.append((trn_idx, val_idx))
                print(f"{i+1}fold: n_trn={len(trn_idx)}, n_val={len(val_idx)}")

            for cat_col in category_columns:
                train_result, test_result = target_encoding(
                    cat_col, df_train_input, df_test_input, target_col,
                    folds_ids)
                df_train_input.drop(columns=[f"{cat_col}_ta"], inplace=True)
                df_test_input.drop(columns=[f"{cat_col}_ta"], inplace=True)
                df_train_features[f"{target_col}__{cat_col}"] = train_result
                df_test_features[f"{target_col}__{cat_col}"] = test_result

        print(df_train_features.isnull().sum())
        print(df_test_features.isnull().sum())

        return df_train_features, df_test_features
コード例 #4
0
    def make_features(self, df_train_input, df_test_input):
        train_data = self._read_inter_table_from_bigquery(self.train_table)
        test_data = self._read_inter_table_from_bigquery(self.test_table)

        train_data["engaging_user_id__hashtag"] = train_data[
            "engaging_user_id"] + "_" + train_data["hashtag"]
        test_data["engaging_user_id__hashtag"] = test_data[
            "engaging_user_id"] + "_" + test_data["hashtag"]

        df_train_features = pd.DataFrame()
        df_test_features = pd.DataFrame()

        folds_train = self._download_from_gs(
            feather_file_name="StratifiedGroupKFold_training.ftr")

        target_columns = [
            "reply_engagement",
            "retweet_engagement",
            "retweet_with_comment_engagement",
            "like_engagement",
        ]

        category_column = "engaging_user_id__hashtag"
        target_encoding_column = f"{category_column}_ta"

        for target_col in target_columns:
            print(f'============= {target_col} =============')

            # Get folds
            folds_col = [
                "StratifiedGroupKFold_retweet_with_comment_engagement"
            ]
            assert len(folds_col) == 1, "The number of fold column must be one"
            folds = folds_train[folds_col]
            n_fold = folds.max().values[0] + 1
            folds_ids = []
            folds_tweet_ids = []

            for i in range(n_fold):
                trn_idx = folds[folds != i].dropna().index
                val_idx = folds[folds == i].dropna().index
                folds_ids.append((trn_idx, val_idx))
                print(f"{i+1}fold: n_trn={len(trn_idx)}, n_val={len(val_idx)}")

                trn_tweet_id = df_train_input.iloc[trn_idx]["tweet_id"].unique(
                )
                val_tweet_id = df_train_input.iloc[val_idx]["tweet_id"].unique(
                )
                print(
                    f"{i+1}fold: n_tweet_trn={len(trn_tweet_id)}, n_tweet_val={len(val_tweet_id)}"
                )

                trn_tweet_idx = train_data.loc[train_data["tweet_id"].isin(
                    trn_tweet_id)].index
                val_tweet_idx = train_data.loc[train_data["tweet_id"].isin(
                    val_tweet_id)].index
                folds_tweet_ids.append((trn_tweet_idx, val_tweet_idx))
                print(
                    f"{i+1}fold: n_tweet_trn={len(trn_tweet_idx)}, n_tweet_trn={len(val_tweet_idx)}"
                )

            _, _ = target_encoding(category_column, train_data, test_data,
                                   target_col, folds_tweet_ids)

            train_agg = train_data.groupby([
                "tweet_id", "engaging_user_id"
            ])[target_encoding_column].agg(["min", "max",
                                            "mean"]).reset_index()
            test_agg = test_data.groupby([
                "tweet_id", "engaging_user_id"
            ])[target_encoding_column].agg(["min", "max",
                                            "mean"]).reset_index()
            train_data.drop(columns=[target_encoding_column], inplace=True)
            test_data.drop(columns=[target_encoding_column], inplace=True)
            feature_names = ['min', 'max', 'mean']

            for fe in feature_names:
                df_train_features[f"{target_col}_{fe}"] = pd.merge(
                    df_train_input,
                    train_agg,
                    on=["tweet_id", "engaging_user_id"],
                    how="left")[fe].values
                df_test_features[f"{target_col}_{fe}"] = pd.merge(
                    df_test_input,
                    test_agg,
                    on=["tweet_id", "engaging_user_id"],
                    how="left")[fe].values

        print(df_train_features.isnull().sum())
        print(df_test_features.isnull().sum())

        return df_train_features, df_test_features
コード例 #5
0
    def make_features(self, df_train_input, df_test_input):
        df_train_features = pd.DataFrame()
        df_test_features = pd.DataFrame()

        folds_train = self._download_from_gs(
            feather_file_name="StratifiedGroupKFold_training.ftr")

        category_columns = [
            "engaged_user_id",
        ]

        target_columns = [
            "like_engagement",
        ]

        # 1tweetあたりのengagementの合計値
        df_train_input_tweet_id = df_train_input.groupby(
            ["tweet_id",
             "engaged_user_id"])[target_columns].sum().reset_index()
        df_test_input_tweet_id = df_test_input.groupby(
            ["tweet_id",
             "engaged_user_id"])[target_columns].sum().reset_index()

        for target_col in target_columns:
            print(f'============= {target_col} =============')

            # Get folds
            folds_col = [
                "StratifiedGroupKFold_retweet_with_comment_engagement"
            ]
            assert len(folds_col) == 1, "The number of fold column must be one"
            folds = folds_train[folds_col]
            n_fold = folds.max().values[0] + 1
            folds_ids = []
            folds_tweet_ids = []

            for i in range(n_fold):
                trn_idx = folds[folds != i].dropna().index
                val_idx = folds[folds == i].dropna().index
                folds_ids.append((trn_idx, val_idx))
                print(f"{i+1}fold: n_trn={len(trn_idx)}, n_val={len(val_idx)}")

                trn_tweet_id = df_train_input.iloc[trn_idx]["tweet_id"].unique(
                )
                val_tweet_id = df_train_input.iloc[val_idx]["tweet_id"].unique(
                )
                print(
                    f"{i+1}fold: n_tweet_trn={len(trn_tweet_id)}, n_tweet_val={len(val_tweet_id)}"
                )

                trn_tweet_idx = df_train_input_tweet_id.loc[
                    df_train_input_tweet_id["tweet_id"].isin(
                        trn_tweet_id)].index
                val_tweet_idx = df_train_input_tweet_id.loc[
                    df_train_input_tweet_id["tweet_id"].isin(
                        val_tweet_id)].index
                folds_tweet_ids.append((trn_tweet_idx, val_tweet_idx))
                print(
                    f"{i+1}fold: n_tweet_trn={len(trn_tweet_idx)}, n_tweet_trn={len(val_tweet_idx)}"
                )

            for cat_col in category_columns:
                # tweet_id単位のengagement総和による{cat_col}のtarget_encoding
                _, _ = target_encoding(cat_col, df_train_input_tweet_id,
                                       df_test_input_tweet_id, target_col,
                                       folds_tweet_ids)

                df_train_features[f"{target_col}__{cat_col}"] = (pd.merge(
                    df_train_input,
                    df_train_input_tweet_id[[
                        f"{cat_col}_ta", "tweet_id", cat_col
                    ]],
                    on=["tweet_id", cat_col],
                    how="left"))[f"{cat_col}_ta"].values

                df_test_features[f"{target_col}__{cat_col}"] = (pd.merge(
                    df_test_input,
                    df_test_input_tweet_id[[
                        f"{cat_col}_ta", "tweet_id", cat_col
                    ]],
                    on=["tweet_id", cat_col],
                    how="left"))[f"{cat_col}_ta"].values

                df_train_input_tweet_id.drop(columns=[f"{cat_col}_ta"],
                                             inplace=True)
                df_test_input_tweet_id.drop(columns=[f"{cat_col}_ta"],
                                            inplace=True)

        eps = 1e-2
        df_train_features["like_follower_ratio"] = (
            df_train_features["like_engagement__engaged_user_id"] /
            (df_train_input["engaged_follower_count"] + eps))
        df_test_features["like_follower_ratio"] = (
            df_test_features["like_engagement__engaged_user_id"] /
            (df_test_input["engaged_follower_count"] + eps))

        print(df_train_features.isnull().sum())
        print(df_test_features.isnull().sum())

        return df_train_features, df_test_features