コード例 #1
0
def test_assign_by_fuel_tech_p():
    """
    """
    path_main = resource_filename(Requirement.parse("energy_demand"),
                                  'config_data')

    # Load data
    data = {}
    data['paths'] = data_loader.load_paths(path_main)
    data['lookups'] = lookup_tables.basic_lookups()
    data['enduses'], data['sectors'], data['fuels'] = data_loader.load_fuels(
        data['paths'], data['lookups'])
    data['local_paths'] = data_loader.load_local_paths(path_main)

    #Load assumptions
    base_yr = 2015

    data['assumptions'] = non_param_assumptions.Assumptions(
        base_yr=base_yr,
        curr_yr=None,
        simulated_yrs=None,
        paths=data['paths'],
        enduses=data['enduses'],
        sectors=data['sectors'],
        fueltypes=data['lookups']['fueltypes'],
        fueltypes_nr=data['lookups']['fueltypes_nr'])

    param_assumptions.load_param_assump(data['paths'], data['local_paths'],
                                        data['assumptions'])

    rs_fuel_tech_p_by, ss_fuel_tech_p_by, is_fuel_tech_p_by = assumptions_fuel_shares.assign_by_fuel_tech_p(
        data['enduses'], data['sectors'], data['lookups']['fueltypes'],
        data['lookups']['fueltypes_nr'])
コード例 #2
0
def test_assign_by_fuel_tech_p(config_file):
    """
    """
    config = data_loader.read_config_file(config_file)

    # Load data
    data = {}
    data['paths'] = config['CONFIG_DATA']
    data['lookups'] = lookup_tables.basic_lookups()
    data['enduses'], data['sectors'], data[
        'fuels'], _, _ = data_loader.load_fuels(data['paths'])

    data['local_paths'] = data_loader.get_local_paths(path_main)

    #Load assumptions
    base_yr = 2015

    data['assumptions'] = general_assumptions.Assumptions(
        submodels_names=['a'],
        base_yr=base_yr,
        curr_yr=None,
        sim_yrs=None,
        paths=data['paths'],
        enduses=data['enduses'],
        sectors=data['sectors'],
        fueltypes=data['lookups']['fueltypes'],
        fueltypes_nr=data['lookups']['fueltypes_nr'])

    strategy_vars_def.load_param_assump(data['paths'], data['local_paths'],
                                        data['assumptions'])

    fuel_tech_p_by = fuel_shares.assign_by_fuel_tech_p(
        data['enduses'], data['sectors'], data['lookups']['fueltypes'],
        data['lookups']['fueltypes_nr'])
コード例 #3
0
def write_only_peak(sim_yr, name_new_folder, path_result, model_results,
                    file_name_peak_day):
    """Write only peak demand and total regional demand for a region
    """
    path_result_sub_folder = os.path.join(path_result, name_new_folder)

    basic_functions.create_folder(path_result_sub_folder)

    path_file_peak_day = os.path.join(
        path_result_sub_folder, "{}__{}__{}".format(file_name_peak_day, sim_yr,
                                                    ".npy"))

    # ------------------------------------
    # Write out peak electricity day demands
    # ------------------------------------
    # Get peak day electricity
    lookups = lookup_tables.basic_lookups()
    fueltype_int = lookups['fueltypes']['electricity']

    national_hourly_demand = np.sum(model_results[fueltype_int], axis=0)
    peak_day_electricity, _ = enduse_func.get_peak_day_single_fueltype(
        national_hourly_demand)
    selected_hours = date_prop.convert_yearday_to_8760h_selection(
        peak_day_electricity)
    selected_demand = model_results[:, :, selected_hours]

    np.save(path_file_peak_day, selected_demand)
コード例 #4
0
def post_install_setup_minimum(args):
    """If not all data are available, this scripts allows to
    create dummy datas (temperature and service sector load profiles)

    """
    path_config_file = args.config_file

    config = data_loader.read_config_file(path_config_file)
    path_local_data = config['PATHS']['path_local_data']

    # ==========================================
    # Post installation setup witout access to non publicy available data
    # ==========================================
    print(
        "... running initialisation scripts with only publicly available data")

    local_paths = data_loader.get_local_paths(path_config_file)

    # Create folders to input data
    raw_folder = os.path.join(path_local_data, '_raw_data')

    basic_functions.create_folder(raw_folder)
    basic_functions.create_folder(config['PATHS']['path_processed_data'])
    basic_functions.create_folder(local_paths['path_post_installation_data'])
    basic_functions.create_folder(local_paths['load_profiles'])
    basic_functions.create_folder(local_paths['rs_load_profile_txt'])
    basic_functions.create_folder(local_paths['ss_load_profile_txt'])

    # Load data
    data = {}

    data['paths'] = data_loader.load_paths(path_config_file)

    data['lookups'] = lookup_tables.basic_lookups()

    data['enduses'], data['sectors'], data[
        'fuels'], lookup_enduses, lookup_sector_enduses = data_loader.load_fuels(
            data['paths'])

    # Assumptions
    data['assumptions'] = general_assumptions.Assumptions(
        lookup_enduses=lookup_enduses,
        lookup_sector_enduses=lookup_sector_enduses,
        base_yr=2015,
        weather_by=config['CONFIG']['user_defined_weather_by'],
        simulation_end_yr=config['CONFIG']['user_defined_simulation_end_yr'],
        paths=data['paths'],
        enduses=data['enduses'],
        sectors=data['sectors'])

    # Read in residential submodel shapes
    run(data['paths'], local_paths, config['CONFIG']['base_yr'])

    # --------
    # Dummy service sector load profiles
    # --------
    dummy_sectoral_load_profiles(local_paths, path_config_file)

    print(
        "Successfully finished post installation setup with open source data")
コード例 #5
0
def dummy_sectoral_load_profiles(local_paths, path_main):
    """
    """
    create_folders_to_file(os.path.join(local_paths['ss_load_profile_txt'], "dumm"), "_processed_data")

    paths = data_loader.load_paths(path_main)
    lu = lookup_tables.basic_lookups()

    dict_enduses, dict_sectors, dict_fuels = data_loader.load_fuels(paths, lu)

    for enduse in dict_enduses['ss_enduses']:
        for sector in dict_sectors['ss_sectors']:

            joint_string_name = str(sector) + "__" + str(enduse)

            # Flat profiles
            load_peak_shape_dh = np.full((24), 1)
            shape_non_peak_y_dh = np.full((365, 24), 1/24)
            shape_peak_yd_factor = 1.0
            shape_non_peak_yd = np.full((365), 1/365)

            write_data.create_txt_shapes(
                joint_string_name,
                local_paths['ss_load_profile_txt'],
                load_peak_shape_dh,
                shape_non_peak_y_dh,
                shape_peak_yd_factor,
                shape_non_peak_yd)
コード例 #6
0
ファイル: model.py プロジェクト: shitabishmam/energy_demand
def create_virtual_dwelling_stocks(regions, curr_yr, data, criterias):
    """Create virtual dwelling stocks for residential
    and service sector.

    If no floor area is avilable, calculate average floor
    area with population information

    Arguments
    ---------

    """
    rs_dw_stock = defaultdict(dict)
    ss_dw_stock = defaultdict(dict)

    for region in regions:

        # -------------
        # Residential dwelling stocks
        # -------------
        dwtype = lookup_tables.basic_lookups()['dwtype']

        # Base year
        rs_dw_stock[region][
            data['assumptions'].base_yr] = dw_stock.rs_dw_stock(
                region, data['assumptions'], data['scenario_data'],
                data['assumptions'].sim_yrs, dwtype,
                data['enduses']['residential'], data['reg_coord'],
                data['assumptions'].scenario_drivers,
                data['assumptions'].base_yr, data['assumptions'].base_yr,
                criterias['virtual_building_stock_criteria'])

        # Current year
        rs_dw_stock[region][curr_yr] = dw_stock.rs_dw_stock(
            region, data['assumptions'], data['scenario_data'],
            data['assumptions'].sim_yrs, dwtype,
            data['enduses']['residential'], data['reg_coord'],
            data['assumptions'].scenario_drivers, curr_yr,
            data['assumptions'].base_yr,
            criterias['virtual_building_stock_criteria'])

        # -------------
        # Service dwelling stocks
        # -------------
        # base year
        ss_dw_stock[region][
            data['assumptions'].base_yr] = dw_stock.ss_dw_stock(
                region, data['enduses']['service'], data['sectors']['service'],
                data['scenario_data'], data['reg_coord'], data['assumptions'],
                data['assumptions'].base_yr, data['assumptions'].base_yr,
                criterias['virtual_building_stock_criteria'])

        # current year
        ss_dw_stock[region][curr_yr] = dw_stock.ss_dw_stock(
            region, data['enduses']['service'], data['sectors']['service'],
            data['scenario_data'], data['reg_coord'], data['assumptions'],
            curr_yr, data['assumptions'].base_yr,
            criterias['virtual_building_stock_criteria'])

    return dict(rs_dw_stock), dict(ss_dw_stock)
コード例 #7
0
ファイル: model.py プロジェクト: shitabishmam/energy_demand
    def __init__(self, regions, data, criterias, assumptions, weather_yr,
                 weather_by):
        """Constructor
        """
        self.curr_yr = assumptions.curr_yr
        # ------------------------
        # Create Dwelling Stock
        # ------------------------
        logging.debug("... generating dwelling stocks")
        lookups = lookup_tables.basic_lookups()

        rs_dw_stock, ss_dw_stock = create_virtual_dwelling_stocks(
            regions, assumptions.curr_yr, data, criterias)

        data['dw_stocks'] = {
            lookups['submodels_names'][0]: rs_dw_stock,
            lookups['submodels_names'][1]: ss_dw_stock,
            lookups['submodels_names'][2]: None
        }

        # Initialise result container to aggregate results
        aggr_results = initialise_result_container(assumptions.fueltypes_nr,
                                                   assumptions.reg_nrs,
                                                   assumptions.lookup_enduses,
                                                   assumptions.nr_of_submodels)

        # -------------------------------------------
        # Simulate regions
        # -------------------------------------------
        for reg_array_nr, region in enumerate(tqdm(regions)):
            #print("... Simulate: region %s, simulation year: %s, percent: (%s)",
            #    region, assumptions.curr_yr, round((100/assumptions.reg_nrs)*reg_array_nr, 2), flush=True)
            #logging.info("... Simulate: region %s, simulation year: %s, percent: (%s)",
            #    region, assumptions.curr_yr, round((100/assumptions.reg_nrs)*reg_array_nr, 2))
            all_submodels = simulate_region(region, data, criterias,
                                            assumptions, weather_yr,
                                            weather_by)

            # ---------------------------------------------
            # Aggregate results specifically over regions
            # ---------------------------------------------
            aggr_results = aggregate_single_region(
                assumptions.reg_nrs, assumptions.lookup_enduses, aggr_results,
                reg_array_nr, all_submodels, criterias['mode_constrained'],
                assumptions.fueltypes_nr, assumptions.enduse_space_heating,
                assumptions.technologies)

        # ---------------------------------------------------
        # Aggregate results for all regions
        # ---------------------------------------------------
        aggr_results = aggregate_across_all_regs(
            aggr_results, assumptions.fueltypes_nr,
            data['assumptions'].reg_nrs, data['enduses'], data['assumptions'],
            criterias, assumptions.technologies)

        # Set all keys of aggr_results as self.attributes
        for key_attribute_name, value in aggr_results.items():
            setattr(self, key_attribute_name, value)
コード例 #8
0
def unconstrained_results(
        results_unconstrained,
        submodels_names
    ):
    """Prepare results for energy supply model for
    unconstrained model running mode (heat is provided).
    The results for the supply model are provided aggregated
    for every submodel, fueltype, region, timestep

    Note
    -----
    Because SMIF only takes results in the
    form of {key: np.aray(regions, timesteps)}, the key
    needs to contain information about submodel and fueltype

    Also these key must be defined in the `submodel_model`
    configuration file

    Arguments
    ----------
    results_unconstrained : array
        Results of unconstrained mode
        np.array((sector, regions, fueltype, timestep))
    submodels_names : list
        Names of sectors for supply model

    Returns
    -------
    supply_results : dict
        No technology specific delivery (heat is provided in form of a fueltype)
        {submodel_fueltype: np.array((region, intervals))}
    """
    supply_results = {}
    fueltypes = lookup_tables.basic_lookups()['fueltypes']

    for submodel_nr, submodel in enumerate(submodels_names):
        for fueltype_str, fueltype_int in fueltypes.items():

            # Generate key name (must be defined in `sector_models`)
            key_name = "{}_{}".format(submodel, fueltype_str)

            # Add fueltype specific demand for all regions
            supply_results[key_name] = results_unconstrained[submodel_nr][:, fueltype_int, :]

            assert not testing_functions.test_if_minus_value_in_array(supply_results[key_name])

    logging.info("... Prepared results for energy supply model in unconstrained mode")
    return supply_results
コード例 #9
0
def test_load_param_assump():
    """
    """
    path_main = resource_filename(Requirement.parse("energy_demand"), "config_data")

    # Load data
    data = {}
    data['paths'] = data_loader.load_paths(path_main)
    data['lookups'] = lookup_tables.basic_lookups()
    data['enduses'], data['sectors'], data['fuels'] = data_loader.load_fuels(data['paths'], data['lookups'])

    sim_param_expected = {}
    sim_param_expected['base_yr'] = 2015

    # Dummy test
    assert sim_param_expected['base_yr'] == 2015
    return
コード例 #10
0
def get_fueltype_int(fueltype_str):
    """Read from dict the fueltype string based on fueltype KeyError

    Arguments
    ---------
    fueltype_str : int
        Key which is to be found in lookup dict

    Returns
    -------
    fueltype_in_string : str
        Fueltype string
    """
    fueltype_lu = lookup_tables.basic_lookups()['fueltypes']

    if not fueltype_str:
        return None
    else:
        return fueltype_lu[fueltype_str]
コード例 #11
0
def get_fueltype_str(fueltype_lu, fueltype_nr):
    """Read from dict the fueltype string based on fueltype KeyError

    Arguments
    ---------
    fueltype : dict
        Fueltype lookup dictionary
    fueltype_nr : int
        Key which is to be found in lookup dict

    Returns
    -------
    fueltype_in_string : str
        Fueltype string
    """
    fueltype_lu = lookup_tables.basic_lookups()['fueltypes']

    for fueltype_str in fueltype_lu:
        if fueltype_lu[fueltype_str] == fueltype_nr:
            return fueltype_str
コード例 #12
0
def test_load_non_param_assump():
    """
    """
    path_main = resource_filename(Requirement.parse("energy_demand"), "config_data")

    # Load data
    data = {}
    paths = data_loader.load_paths(path_main)
    lu = lookup_tables.basic_lookups()
    enduses, sectors, _ = data_loader.load_fuels(paths, lu)

    non_param_assumptions.Assumptions(
        base_yr=2015,
        curr_yr=None,
        simulated_yrs=None,
        paths=paths,
        enduses=enduses,
        sectors=sectors,
        fueltypes=lu['fueltypes'],
        fueltypes_nr=lu['fueltypes_nr'])
コード例 #13
0
def sum_across_all_submodels_regs(regions, submodels):
    """Calculate total sum of fuel per region
    """
    fueltypes_nr = lookup_tables.basic_lookups()['fueltypes_nr']
    fuel_aggregated_regs = {}

    for region in regions:
        tot_reg = np.zeros((fueltypes_nr), dtype="float")
        for submodel_fuel_disagg in submodels:
            for fuel_sector_enduse in submodel_fuel_disagg[region].values():

                # Test if fuel for sector
                if isinstance(fuel_sector_enduse, dict):
                    for sector_fuel in fuel_sector_enduse.values():
                        tot_reg += sector_fuel
                else:
                    tot_reg += fuel_sector_enduse

        fuel_aggregated_regs[region] = tot_reg

    return fuel_aggregated_regs
コード例 #14
0
def constrained_results(
        results_constrained,
        results_unconstrained_no_heating,
        submodels_names,
        technologies,
    ):
    """Prepare results for energy supply model for
    constrained model running mode (no heat is provided but
    technology specific fuel use).
    The results for the supply model are provided aggregated
    as follows:

        { "submodel_fueltype_tech": np.array(regions, timesteps)}

    Because SMIF only takes results in the
    form of {key: np.array(regions, timesteps)}, the key
    needs to contain information about submodel, fueltype,
    and technology. Also these key must be defined in
    the `submodel_model` configuration file.

    Arguments
    ----------
    results_constrained : dict
        Aggregated results in form
        {technology: np.array((sector, region, fueltype, timestep))}
    results_unconstrained_no_heating : dict
        Aggregated results without heating
        {technology: np.array((sector, region, fueltype, timestep))}
    submodels_names : list
        Names of sectors fur supply model
    technologies : dict
        Technologies

    Returns
    -------
    supply_results : dict
        No technology specific delivery (heat is provided in form of a fueltype)
        {submodel_fueltype: np.array((region, intervals))}

    Note
    -----
    For the fuel demand for CHP plants, the co-generated electricity
    is not included in the demand model. Additional electricity supply
    generated from CHP plants need to be calculated in the supply
    model based on the fuel demand for CHP.
    For CHP efficiency therefore not the overall efficiency is used
    but only the thermal efficiency
    """
    supply_results = {}
    fueltypes = lookup_tables.basic_lookups()['fueltypes']

    # ----------------------------------------
    # Add all constrained results (technology specific results)
    # Aggregate according to submodel, fueltype, technology, region, timestep
    # ----------------------------------------
    for submodel_nr, submodel in enumerate(submodels_names):
        for tech, fuel_tech in results_constrained.items():
            # Technological simplifications because of different technology definition and because not all technologies are used in supply model
            tech_simplified = model_tech_simplification(tech)
            fueltype_str = technologies[tech_simplified].fueltype_str
            fueltype_int = technologies[tech_simplified].fueltype_int
            key_name = "{}_{}_{}".format(submodel, fueltype_str, tech_simplified)

            supply_results[key_name] = fuel_tech[submodel_nr][:, fueltype_int, :]

    assert not testing_functions.test_if_minus_value_in_array(results_unconstrained_no_heating)

    # ---------------------------------
    # Add non_heating for all fueltypes
    # ---------------------------------
    for submodel_nr, submodel in enumerate(submodels_names):
        for fueltype_str, fueltype_int in fueltypes.items():

            if fueltype_str == 'heat':
                pass #Do not add non_heating demand for fueltype heat
            else:
                key_name = "{}_{}_{}".format(submodel, fueltype_str, "non_heating")

                # Add fuel for all regions for specific fueltype
                supply_results[key_name] = results_unconstrained_no_heating[submodel_nr][:, fueltype_int, :]

    # --------------------------------------------
    # Check whether any entry is smaller than zero
    # --------------------------------------------
    for key_name, values in supply_results.items():
        if testing_functions.test_if_minus_value_in_array(values):
            raise Exception("Error d: Negative entry in results {} {}".format(key_name, np.sum(values)))

    return supply_results
コード例 #15
0
def read_user_defined_param(df, simulation_base_yr, simulation_end_yr,
                            default_streategy_var, var_name):
    """Read in user defined narrative parameters
    """
    parameter_narratives = {}
    single_param_narratives = {}

    lookups = lookup_tables.basic_lookups()

    # End uses
    columns = list(df.columns)

    if 'enduses' in columns:
        sub_param_crit = True
    else:
        sub_param_crit = False

    if len(list(df.columns)) == 1:
        single_dim_param = True
    else:
        single_dim_param = False

    if single_dim_param:

        # Read single dimension param and create single step narrative
        single_step_narrative = {}
        single_step_narrative['sector'] = 'dummy_sector'
        single_step_narrative['default_value'] = default_streategy_var[
            'default_value']
        single_step_narrative['value_ey'] = float(df[var_name][0])
        single_step_narrative['end_yr'] = simulation_end_yr
        single_step_narrative['base_yr'] = simulation_base_yr
        single_step_narrative['value_by'] = default_streategy_var[
            'default_value']
        single_step_narrative['regional_specific'] = default_streategy_var[
            'regional_specific']
        single_step_narrative['diffusion_choice'] = 'linear'
        single_param_narratives = [single_step_narrative]
        return single_param_narratives
    else:
        # Read multidmensional param
        if sub_param_crit:
            enduses = set(df['enduses'].values)
            for enduse in enduses:
                parameter_narratives[enduse] = {}

                # All rows of enduse
                df_enduse = df.loc[df['enduses'] == enduse]

                # Get all sectors and years
                sectors = set()
                end_yrs = set()

                for i in df_enduse.index:
                    try:
                        sector = df_enduse.at[i, 'sector']
                        sectors.add(sector)
                    except:
                        pass

                    try:
                        end_yr = int(df_enduse.at[i, 'end_yr'])
                        end_yrs.add(end_yr)
                    except:
                        pass
                if list(sectors) == []:

                    for end_yr in end_yrs:
                        try:
                            _ = default_streategy_var[enduse]
                            defined_in_model = True
                        except KeyError:
                            #print("... not defined in model")
                            defined_in_model = False

                        # All entries of this year df_enduse and this fueltype
                        df_enduse_sim_yr = df_enduse.loc[df_enduse['end_yr'] ==
                                                         end_yr]

                        if defined_in_model:
                            narrative = {}
                            narrative['sector'] = 'dummy_sector'
                            narrative['end_yr'] = end_yr
                            narrative['sig_midpoint'] = 0
                            narrative['sig_steepness'] = 1
                            narrative[
                                'regional_specific'] = default_streategy_var[
                                    enduse]['regional_specific']
                            narrative['default_by'] = default_streategy_var[
                                enduse]['default_value']

                            # Check if more than one entry
                            for _index, row in df_enduse_sim_yr.iterrows():

                                try:
                                    interpolation_params = row[
                                        'interpolation_params']
                                except KeyError:
                                    # Generic fuel switch
                                    interpolation_params = row[
                                        'param_generic_fuel_switch']

                                # If more than one switch per enduse
                                if interpolation_params in narrative:

                                    # Add narrative and start new one
                                    try:
                                        parameter_narratives[enduse][narrative[
                                            'sector']].append(narrative)
                                    except KeyError:
                                        parameter_narratives[enduse][
                                            narrative['sector']] = [narrative]

                                    narrative = {}
                                    narrative['sector'] = 'dummy_sector'
                                    narrative['end_yr'] = end_yr
                                    narrative['sig_midpoint'] = 0
                                    narrative['sig_steepness'] = 1
                                    narrative[
                                        'regional_specific'] = default_streategy_var[
                                            enduse]['regional_specific']
                                    narrative[
                                        'default_by'] = default_streategy_var[
                                            enduse]['default_value']

                                    if interpolation_params == 'diffusion_choice':
                                        int_diffusion_choice = float(
                                            row[var_name])
                                        narrative[
                                            'diffusion_choice'] = lookups[
                                                'diffusion_type'][
                                                    int_diffusion_choice]
                                    else:
                                        narrative[
                                            interpolation_params] = float(
                                                row[var_name])
                                else:
                                    if interpolation_params == 'diffusion_choice':
                                        int_diffusion_choice = float(
                                            row[var_name])
                                        narrative[
                                            'diffusion_choice'] = lookups[
                                                'diffusion_type'][
                                                    int_diffusion_choice]
                                    else:
                                        narrative[
                                            interpolation_params] = float(
                                                row[var_name])

                            # Add narrative
                            try:
                                parameter_narratives[enduse][
                                    narrative['sector']].append(narrative)
                            except KeyError:
                                parameter_narratives[enduse][
                                    narrative['sector']] = [narrative]
                else:
                    # If setctor specific, this needs to be implemented
                    pass
        else:
            sectors = set()
            end_yrs = set()

            for i in df.index:
                try:
                    sector = df.at[i, 'sector']
                    sectors.add(sector)
                except:
                    pass
                try:
                    end_yr = int(df.at[i, 'end_yr'])
                    end_yrs.add(end_yr)
                except:
                    pass

            if list(sectors) == []:
                parameter_narratives['dummy_single_param'] = {}

                for end_yr in end_yrs:
                    narrative = {}
                    narrative['sector'] = 'dummy_sector'
                    narrative['end_yr'] = end_yr
                    narrative['sig_midpoint'] = 0
                    narrative['sig_steepness'] = 1
                    narrative['regional_specific'] = default_streategy_var[
                        'regional_specific']
                    narrative['default_by'] = default_streategy_var[
                        'default_value']

                    for _index, row in df.iterrows():

                        interpolation_params = row['interpolation_params']

                        if interpolation_params == 'diffusion_choice':
                            lookups = lookup_tables.basic_lookups()
                            int_diffusion_choice = int(row[var_name])
                            narrative['diffusion_choice'] = lookups[
                                'diffusion_type'][int_diffusion_choice]
                        else:
                            narrative[interpolation_params] = float(
                                row[var_name])

                    # Add narrative
                    try:
                        parameter_narratives['dummy_single_param'][
                            narrative['sector']].append(narrative)
                    except (KeyError, AttributeError):
                        parameter_narratives['dummy_single_param'][
                            narrative['sector']] = [narrative]
            else:
                # Needs to be implemented in case sector specific
                pass

        # ------------
        # Autocomplete
        # ------------
        print("... autocomplete")
        parameter_narratives = autocomplete(parameter_narratives,
                                            simulation_base_yr, sub_param_crit)

        return parameter_narratives
コード例 #16
0
def process_scenarios(path_to_scenarios, year_to_model=2015):
    """Iterate folder with scenario results and plot charts

    Arguments
    ----------
    path_to_scenarios : str
        Path to folders with stored results
    year_to_model : int, default=2015
        Year of base year
    """
    # -----------
    # Charts to plot
    # -----------
    heat_pump_range_plot = True        # Plot of changing scenario values stored in scenario name

    # Delete folder results if existing
    path_result_folder = os.path.join(
        path_to_scenarios, "__results_hp_chart")

    basic_functions.delete_folder(path_result_folder)

    seasons = date_prop.get_season(
        year_to_model=year_to_model)

    model_yeardays_daytype, _, _ = date_prop.get_yeardays_daytype(
        year_to_model=year_to_model)

    lookups = lookup_tables.basic_lookups()

    # Get all folders with scenario run results (name of folder is scenario)
    scenarios_hp = os.listdir(path_to_scenarios)

    scenario_data = {}

    for scenario_hp in scenarios_hp:
        print("HP SCENARIO " + str(scenario_hp))
        print(path_to_scenarios)
        scenario_data[scenario_hp] = {}

        # Simulation information is read in from .ini file for results
        path_fist_scenario = os.path.join(path_to_scenarios, scenario_hp)

        # -------------------------------
        # Iterate folders and get results
        # -------------------------------
        scenarios = os.listdir(path_fist_scenario)

        for scenario in scenarios:

            enduses, assumptions, reg_nrs, regions = data_loader.load_ini_param(
                os.path.join(path_fist_scenario, scenario))

            # Add scenario name to folder
            scenario_data[scenario_hp][scenario] = {}

            path_to_result_files = os.path.join(
                path_fist_scenario,
                scenario,
                'model_run_results_txt')

            scenario_data[scenario_hp][scenario] = read_data.read_in_results(
                path_result=path_to_result_files,
                seasons=seasons,
                model_yeardays_daytype=model_yeardays_daytype)

    # -----------------------
    # Generate result folder
    # -----------------------
    basic_functions.create_folder(path_result_folder)

    # -------------------------------
    # Generate plot with heat pump ranges
    # -------------------------------
    if heat_pump_range_plot:

        plotting_multiple_scenarios.plot_heat_pump_chart_multiple(
            lookups,
            regions,
            hp_scenario_data=scenario_data,
            fig_name=os.path.join(path_result_folder, "comparison_hp_share_peak_h.pdf"),
            txt_name=os.path.join(path_result_folder, "comparison_hp_share_peak_h.txt"),
            fueltype_str_input='electricity',
            plotshow=True)

    return
コード例 #17
0
def logg_info(modelrun, fuels_in, data):
    """Logg information
    """
    lookups = lookup_tables.basic_lookups()
    logging.info("=====================================================")
    logging.info("Simulation year:         %s", str(modelrun.curr_yr))
    logging.info("Nr of regions:           %s",
                 str(data['assumptions'].reg_nrs))
    logging.info("Total ktoe:              %s",
                 str(conversions.gwh_to_ktoe(fuels_in["fuel_in"])))
    logging.info("-----------------------------------------------------")
    logging.info("[GWh] Total input:       %s", str(fuels_in["fuel_in"]))
    logging.info("[GWh] Total output:      %s",
                 str(np.sum(modelrun.ed_fueltype_national_yh)))
    logging.info(
        "[GWh] Total difference:  %s",
        str(
            round((np.sum(modelrun.ed_fueltype_national_yh) -
                   fuels_in["fuel_in"]), 4)))
    logging.info("-----------------------------------------------------")
    logging.info("[GWh] oil input:         %s", str(fuels_in["fuel_in_oil"]))
    logging.info(
        "[GWh] oil output:        %s",
        str(
            np.sum(modelrun.ed_fueltype_national_yh[lookups['fueltypes']
                                                    ['oil']])))
    logging.info(
        "[GWh] oil diff:          %s",
        str(
            round(
                np.sum(modelrun.ed_fueltype_national_yh[
                    lookups['fueltypes']['oil']]) - fuels_in["fuel_in_oil"],
                4)))
    logging.info("-----------------------------------------------------")
    logging.info("[GWh] biomass output:    %s",
                 str(fuels_in["fuel_in_biomass"]))
    logging.info(
        "[GWh] biomass output:    %s",
        str(
            np.sum(modelrun.ed_fueltype_national_yh[lookups['fueltypes']
                                                    ['biomass']])))
    logging.info(
        "[GWh] biomass diff:      %s",
        str(
            round(
                np.sum(modelrun.ed_fueltype_national_yh[lookups['fueltypes']
                                                        ['biomass']]) -
                fuels_in["fuel_in_biomass"], 4)))
    logging.info("-----------------------------------------------------")
    logging.info("[GWh] solid_fuel output: %s",
                 str(fuels_in["fuel_in_solid_fuel"]))
    logging.info(
        "[GWh] solid_fuel output: %s",
        str(
            np.sum(modelrun.ed_fueltype_national_yh[lookups['fueltypes']
                                                    ['solid_fuel']])))
    logging.info(
        "[GWh] solid_fuel diff:   %s",
        str(
            round(
                np.sum(modelrun.ed_fueltype_national_yh[lookups['fueltypes']
                                                        ['solid_fuel']]) -
                fuels_in["fuel_in_solid_fuel"], 4)))
    logging.info("-----------------------------------------------------")
    logging.info("[GWh] elec output:       %s", str(fuels_in["fuel_in_elec"]))
    logging.info(
        "[GWh] elec output:       %s",
        str(
            np.sum(modelrun.ed_fueltype_national_yh[lookups['fueltypes']
                                                    ['electricity']])))
    logging.info(
        "[GWh] ele fuel diff:     %s",
        str(
            round(
                np.sum(modelrun.ed_fueltype_national_yh[lookups['fueltypes']
                                                        ['electricity']]) -
                fuels_in["fuel_in_elec"], 4)))
    logging.info("-----------------------------------------------------")
    logging.info("[GWh] gas output:        %s", str(fuels_in["fuel_in_gas"]))
    logging.info(
        "[GWh] gas output:        %s",
        str(
            np.sum(modelrun.ed_fueltype_national_yh[lookups['fueltypes']
                                                    ['gas']])))
    logging.info(
        "[GWh] gas diff:          %s",
        str(
            round(
                np.sum(modelrun.ed_fueltype_national_yh[
                    lookups['fueltypes']['gas']]) - fuels_in["fuel_in_gas"],
                4)))
    logging.info("-----------------------------------------------------")
    logging.info("[GWh] hydro output:      %s",
                 str(fuels_in["fuel_in_hydrogen"]))
    logging.info(
        "[GWh] hydro output:      %s",
        str(
            np.sum(modelrun.ed_fueltype_national_yh[lookups['fueltypes']
                                                    ['hydrogen']])))
    logging.info(
        "[GWh] hydro diff:        %s",
        str(
            round(
                np.sum(modelrun.ed_fueltype_national_yh[lookups['fueltypes']
                                                        ['hydrogen']]) -
                fuels_in["fuel_in_hydrogen"], 4)))
    logging.info("-----------------------------------------------------")
    logging.info("TOTAL HEATING            %s", str(fuels_in["tot_heating"]))
    logging.info("[GWh] heat input:        %s", str(fuels_in["fuel_in_heat"]))
    logging.info(
        "[GWh] heat output:       %s",
        str(
            np.sum(modelrun.ed_fueltype_national_yh[lookups['fueltypes']
                                                    ['heat']])))
    logging.info(
        "[GWh] heat diff:         %s",
        str(
            round(
                np.sum(modelrun.ed_fueltype_national_yh[
                    lookups['fueltypes']['heat']]) - fuels_in["fuel_in_heat"],
                4)))
    logging.info("-----------------------------------------------------")
    logging.info(
        "Diff elec p:             %s",
        str(
            round((np.sum(modelrun.ed_fueltype_national_yh[lookups['fueltypes']
                                                           ['electricity']]) /
                   fuels_in["fuel_in_elec"]), 4)))
    logging.info(
        "Diff gas p:              %s",
        str(
            round((np.sum(
                modelrun.ed_fueltype_national_yh[lookups['fueltypes']['gas']])
                   / fuels_in["fuel_in_gas"]), 4)))
    logging.info(
        "Diff oil p:              %s",
        str(
            round((np.sum(
                modelrun.ed_fueltype_national_yh[lookups['fueltypes']['oil']])
                   / fuels_in["fuel_in_oil"]), 4)))
    logging.info(
        "Diff solid_fuel p:       %s",
        str(
            round((np.sum(modelrun.ed_fueltype_national_yh[lookups['fueltypes']
                                                           ['solid_fuel']]) /
                   fuels_in["fuel_in_solid_fuel"]), 4)))
    logging.info(
        "Diff hydrogen p:         %s",
        str(
            round((np.sum(modelrun.ed_fueltype_national_yh[lookups['fueltypes']
                                                           ['hydrogen']]) /
                   fuels_in["fuel_in_hydrogen"]), 4)))
    logging.info(
        "Diff biomass p:          %s",
        str(
            round((np.sum(modelrun.ed_fueltype_national_yh[lookups['fueltypes']
                                                           ['biomass']]) /
                   fuels_in["fuel_in_biomass"]), 4)))
    logging.info("=====================================================")
コード例 #18
0
    def __init__(
            self,
            name,
            assumptions,
            technologies,
            enduses,
            temp_by,
            temp_cy,
            tech_lp,
            sectors,
            crit_temp_min_max
        ):
        """Constructor of weather region
        """
        self.name = name

        fueltypes = lookup_tables.basic_lookups()['fueltypes']

        # Base temperatures of current year
        rs_t_base_heating_cy = assumptions.non_regional_vars['rs_t_base_heating'][assumptions.curr_yr]
        ss_t_base_heating_cy = assumptions.non_regional_vars['ss_t_base_heating'][assumptions.curr_yr]
        ss_t_base_cooling_cy = assumptions.non_regional_vars['ss_t_base_cooling'][assumptions.curr_yr]
        is_t_base_heating_cy = assumptions.non_regional_vars['is_t_base_heating'][assumptions.curr_yr]

        # ==================================================================
        # Technology stocks
        # ==================================================================
        rs_tech_stock = technological_stock.TechStock(
            'rs_tech_stock',
            technologies,
            assumptions.base_yr,
            assumptions.curr_yr,
            fueltypes,
            temp_by,
            temp_cy,
            assumptions.t_bases.rs_t_heating,
            enduses['residential'],
            rs_t_base_heating_cy,
            assumptions.specified_tech_enduse_by)

        ss_tech_stock = technological_stock.TechStock(
            'ss_tech_stock',
            technologies,
            assumptions.base_yr,
            assumptions.curr_yr,
            fueltypes,
            temp_by,
            temp_cy,
            assumptions.t_bases.ss_t_heating,
            enduses['service'],
            ss_t_base_heating_cy,
            assumptions.specified_tech_enduse_by)

        is_tech_stock = technological_stock.TechStock(
            'is_tech_stock',
            technologies,
            assumptions.base_yr,
            assumptions.curr_yr,
            fueltypes,
            temp_by,
            temp_cy,
            assumptions.t_bases.is_t_heating,
            enduses['industry'],
            ss_t_base_heating_cy,
            assumptions.specified_tech_enduse_by)

        self.tech_stock = {
            'residential': rs_tech_stock,
            'service': ss_tech_stock,
            'industry': is_tech_stock}

        # ==================================================================
        # Load profiles
        # ==================================================================
        flat_shape_yd, _, flat_shape_y_dh = generic_shapes.flat_shape()

        # ==================================================================
        # Residential submodel load profiles
        # ==================================================================
        load_profiles = load_profile.LoadProfileStock("load_profiles")
        dummy_sector = None

        # --------Calculate HDD/CDD of used weather year
        self.rs_hdd_by, _ = hdd_cdd.calc_reg_hdd(
            temp_by, assumptions.t_bases.rs_t_heating, assumptions.model_yeardays, crit_temp_min_max)
        self.rs_hdd_cy, rs_fuel_shape_heating_yd = hdd_cdd.calc_reg_hdd(
            temp_cy, rs_t_base_heating_cy, assumptions.model_yeardays, crit_temp_min_max)

        # --------Calculate HDD/CDD of base year weather year
        #self.rs_cdd_by, _ = hdd_cdd.calc_reg_cdd(
        #    temp_by, assumptions.t_bases.rs_t_cooling_by, assumptions.model_yeardays)
        #self.rs_cdd_cy, rs_fuel_shape_cooling_yd = hdd_cdd.calc_reg_cdd(
        #    temp_cy, rs_t_base_cooling_cy, assumptions.model_yeardays)

        # -------Calculate climate change correction factors
        try:
            f_heat_rs_y = np.nan_to_num(
                1.0 / float(np.sum(self.rs_hdd_by))) * np.sum(self.rs_hdd_cy)
            #self.f_cooling_rs_y = np.nan_to_num(
            #    1.0 / float(np.sum(self.rs_cdd_by))) * np.sum(self.rs_cdd_cy)
            f_cooling_rs_y = 1
        except ZeroDivisionError:
            f_heat_rs_y = 1
            f_cooling_rs_y = 1

        # Calculate rs peak day
        rs_peak_day = enduse_func.get_peak_day(self.rs_hdd_cy)

        # ========
        # Enduse specific profiles
        # ========
        # -- Apply enduse sepcific shapes for enduses with not technologies with own defined shapes
        for enduse in enduses['residential']:

            # Enduses where technology specific load profiles are defined for yh
            if enduse in ['rs_space_heating']:
                pass
            else:
                # Get all technologies of enduse
                tech_list = helpers.get_nested_dict_key(
                    assumptions.fuel_tech_p_by[enduse][dummy_sector])

                # Remove heat pumps from rs_water_heating
                tech_list = basic_functions.remove_element_from_list(tech_list, 'heat_pumps_electricity')

                shape_y_dh = insert_peak_dh_shape(
                    peak_day=rs_peak_day,
                    shape_y_dh=tech_lp['rs_shapes_dh'][enduse]['shape_non_peak_y_dh'],
                    shape_peak_dh=tech_lp['rs_shapes_dh'][enduse]['shape_peak_dh'])

                load_profiles.add_lp(
                    unique_identifier=uuid.uuid4(),
                    technologies=tech_list,
                    enduses=[enduse],
                    shape_yd=tech_lp['rs_shapes_yd'][enduse]['shape_non_peak_yd'],
                    shape_y_dh=shape_y_dh,
                    sectors=[dummy_sector],
                    model_yeardays=assumptions.model_yeardays)

        # ==========
        # Technology specific profiles for residential heating
        # ===========
        # ------Heating boiler
        load_profiles.add_lp(
            unique_identifier=uuid.uuid4(),
            technologies=assumptions.tech_list['heating_const'],
            enduses=['rs_space_heating'],
            shape_yd=rs_fuel_shape_heating_yd,
            shape_y_dh=tech_lp['rs_profile_boilers_y_dh'],
            sectors=[dummy_sector],
            model_yeardays=assumptions.model_yeardays)

        # ------Heating CHP
        rs_profile_chp_y_dh = insert_peak_dh_shape(
            peak_day=rs_peak_day,
            shape_y_dh=tech_lp['rs_profile_chp_y_dh'],
            shape_peak_dh=tech_lp['rs_lp_heating_CHP_dh']['peakday'])

        load_profiles.add_lp(
            unique_identifier=uuid.uuid4(),
            technologies=assumptions.tech_list['tech_CHP'],
            enduses=['rs_space_heating'],
            shape_yd=rs_fuel_shape_heating_yd,
            shape_y_dh=rs_profile_chp_y_dh,
            sectors=[dummy_sector],
            model_yeardays=assumptions.model_yeardays)

        # ------Electric heating, storage heating (primary)
        load_profiles.add_lp(
            unique_identifier=uuid.uuid4(),
            technologies=assumptions.tech_list['storage_heating_electricity'],
            enduses=['rs_space_heating'],
            shape_yd=rs_fuel_shape_heating_yd,
            shape_y_dh=tech_lp['rs_profile_storage_heater_y_dh'],
            sectors=[dummy_sector],
            model_yeardays=assumptions.model_yeardays)

        # ------Electric heating secondary (direct elec heating)
        load_profiles.add_lp(
            unique_identifier=uuid.uuid4(),
            technologies=assumptions.tech_list['secondary_heating_electricity'],
            enduses=['rs_space_heating'],
            shape_yd=rs_fuel_shape_heating_yd,
            shape_y_dh=tech_lp['rs_profile_elec_heater_y_dh'],
            sectors=[dummy_sector],
            model_yeardays=assumptions.model_yeardays)

        # ------Heat pump heating
        rs_profile_hp_y_dh = insert_peak_dh_shape(
            peak_day=rs_peak_day,
            shape_y_dh=tech_lp['rs_profile_hp_y_dh'],
            shape_peak_dh=tech_lp['rs_lp_heating_hp_dh']['peakday'])

        rs_fuel_shape_hp_yh, rs_hp_shape_yd = get_fuel_shape_heating_hp_yh(
            tech_lp_y_dh=rs_profile_hp_y_dh,
            tech_stock=rs_tech_stock,
            rs_hdd_cy=self.rs_hdd_cy,
            model_yeardays=assumptions.model_yeardays)

        load_profiles.add_lp(
            unique_identifier=uuid.uuid4(),
            technologies=assumptions.tech_list['heating_non_const'],
            enduses=['rs_space_heating', 'rs_water_heating'],
            shape_y_dh=rs_profile_hp_y_dh,
            shape_yd=rs_hp_shape_yd,
            shape_yh=rs_fuel_shape_hp_yh,
            sectors=[dummy_sector],
            model_yeardays=assumptions.model_yeardays)

        # ------District_heating_electricity. Assumption made that same curve as CHP
        load_profiles.add_lp(
            unique_identifier=uuid.uuid4(),
            technologies=assumptions.tech_list['tech_district_heating'],
            enduses=['rs_space_heating'],
            shape_yd=rs_fuel_shape_heating_yd,
            shape_y_dh=rs_profile_hp_y_dh,
            sectors=[dummy_sector],
            model_yeardays=assumptions.model_yeardays)

        # ==================================================================
        # Service Submodel load profiles
        # ==================================================================
        # --------HDD/CDD
        # current weather_yr
        self.ss_hdd_by, _ = hdd_cdd.calc_reg_hdd(
            temp_by, assumptions.t_bases.ss_t_heating, assumptions.model_yeardays, crit_temp_min_max)

        ss_hdd_cy, ss_fuel_shape_heating_yd = hdd_cdd.calc_reg_hdd(
            temp_cy, ss_t_base_heating_cy, assumptions.model_yeardays, crit_temp_min_max)

        self.ss_cdd_by, _ = hdd_cdd.calc_reg_cdd(
            temp_by, assumptions.t_bases.ss_t_cooling, assumptions.model_yeardays, crit_temp_min_max)

        ss_cdd_cy, ss_lp_cooling_yd = hdd_cdd.calc_reg_cdd(
            temp_cy, ss_t_base_cooling_cy, assumptions.model_yeardays, crit_temp_min_max)

        try:
            f_heat_ss_y = np.nan_to_num(
                1.0 / float(np.sum(self.ss_hdd_by))) * np.sum(ss_hdd_cy)
            f_cooling_ss_y = np.nan_to_num(
                1.0 / float(np.sum(self.ss_cdd_by))) * np.sum(ss_cdd_cy)
        except ZeroDivisionError:
            f_heat_ss_y = 1
            f_cooling_ss_y = 1

        # ========
        # Enduse specific profiles
        # ========
        # - Assign to each enduse the carbon fuel trust dataset
        for enduse in enduses['service']:

            # Skip temperature dependent end uses (regional) because load profile in regional load profile stock
            if enduse in assumptions.enduse_space_heating or enduse in assumptions.ss_enduse_space_cooling:
                pass
            else:
                for sector in sectors['service']:

                    # Get technologies with assigned fuel shares
                    tech_list = helpers.get_nested_dict_key(
                        assumptions.fuel_tech_p_by[enduse][sector])

                    # Apply correction factor for weekend_effect
                    shape_non_peak_yd_weighted = load_profile.abs_to_rel(
                        tech_lp['ss_shapes_yd'][enduse][sector]['shape_non_peak_yd'] * assumptions.ss_weekend_f)

                    load_profiles.add_lp(
                        unique_identifier=uuid.uuid4(),
                        technologies=tech_list,
                        enduses=[enduse],
                        shape_yd=shape_non_peak_yd_weighted,
                        shape_y_dh=tech_lp['ss_shapes_dh'][enduse][sector]['shape_non_peak_y_dh'],
                        model_yeardays=assumptions.model_yeardays,
                        sectors=[sector])

        # Apply correction factor for weekend_effect for space heating
        ss_fuel_shape_heating_yd_weighted = load_profile.abs_to_rel(
            ss_fuel_shape_heating_yd * assumptions.ss_weekend_f)

        # ========
        # Technology specific profiles
        # ========

        # Flatten list of all potential technologies
        ss_space_heating_tech_lists = list(assumptions.tech_list.values())
        all_techs_ss_space_heating = [item for sublist in ss_space_heating_tech_lists for item in sublist]


        # -----Heat pump (RESIDENTIAL HEAT PUMP PROFILE FOR SERVICE SECTOR)
        all_techs_ss_space_heating = basic_functions.remove_element_from_list(
            all_techs_ss_space_heating, 'heat_pumps_electricity')

        ss_fuel_shape_hp_yh, ss_hp_shape_yd = get_fuel_shape_heating_hp_yh(
            tech_lp_y_dh=rs_profile_hp_y_dh,
            tech_stock=rs_tech_stock,
            rs_hdd_cy=ss_hdd_cy,
            model_yeardays=assumptions.model_yeardays)

        load_profiles.add_lp(
            unique_identifier=uuid.uuid4(),
            technologies=assumptions.tech_list['heating_non_const'],
            enduses=['ss_space_heating', 'ss_water_heating'],
            sectors=sectors['service'],
            shape_y_dh=rs_profile_hp_y_dh,
            shape_yd=ss_hp_shape_yd,
            shape_yh=ss_fuel_shape_hp_yh,
            model_yeardays=assumptions.model_yeardays)

        # ---secondary_heater_electricity Info: The residential direct heating load profile is used
        all_techs_ss_space_heating = basic_functions.remove_element_from_list(
            all_techs_ss_space_heating, 'secondary_heater_electricity')

        # Get aggregated electricity load profile
        #ALTERNATIVE :tech_lp['ss_all_tech_shapes_dh']['ss_other_electricity']['shape_non_peak_y_dh']
        load_profiles.add_lp(
            unique_identifier=uuid.uuid4(),
            technologies=assumptions.tech_list['secondary_heating_electricity'],
            enduses=['ss_space_heating'],
            sectors=sectors['service'],
            shape_yd=ss_fuel_shape_heating_yd_weighted,
            shape_y_dh=tech_lp['rs_profile_elec_heater_y_dh'],
            model_yeardays=assumptions.model_yeardays)
            # ELEC CURVE ss_fuel_shape_electricity # DIRECT HEATING ss_profile_elec_heater_yh

        # ---Heating technologies (all other)
        # (the heating shape follows the gas shape of aggregated sectors)
        # meaning that for all technologies, the load profile is the same
        load_profiles.add_lp(
            unique_identifier=uuid.uuid4(),
            technologies=all_techs_ss_space_heating,
            enduses=['ss_space_heating'],
            sectors=sectors['service'],
            shape_yd=ss_fuel_shape_heating_yd_weighted,
            shape_y_dh=tech_lp['ss_all_tech_shapes_dh']['ss_space_heating']['shape_non_peak_y_dh'],
            model_yeardays=assumptions.model_yeardays)

        # --Add cooling technologies for service sector
        coolings_techs = assumptions.tech_list['cooling_const']

        for cooling_enduse in assumptions.ss_enduse_space_cooling:
            for sector in sectors['service']:

                # Apply correction factor for weekend_effect 'cdd_weekend_cfactors'
                ss_lp_cooling_yd_weighted = load_profile.abs_to_rel(
                    ss_lp_cooling_yd * assumptions.cdd_weekend_cfactors)

                load_profiles.add_lp(
                    unique_identifier=uuid.uuid4(),
                    technologies=coolings_techs,
                    enduses=[cooling_enduse],
                    sectors=[sector],
                    shape_yd=ss_lp_cooling_yd_weighted,
                    shape_y_dh=tech_lp['ss_profile_cooling_y_dh'],
                    model_yeardays=assumptions.model_yeardays)

        # ==================================================================
        # Industry submodel load profiles
        # ==================================================================

        # --------HDD/CDD
        # Current weather_yr
        self.is_hdd_by, _ = hdd_cdd.calc_reg_hdd(
            temp_by, assumptions.t_bases.is_t_heating, assumptions.model_yeardays, crit_temp_min_max)

        #is_cdd_by, _ = hdd_cdd.calc_reg_cdd(
        #    temp_by, assumptions.t_bases.is_t_cooling, assumptions.model_yeardays)

        # Take same base temperature as for service sector
        is_hdd_cy, is_fuel_shape_heating_yd = hdd_cdd.calc_reg_hdd(
            temp_cy, is_t_base_heating_cy, assumptions.model_yeardays, crit_temp_min_max)
        #is_cdd_cy, _ = hdd_cdd.calc_reg_cdd(
        #    temp_cy, ss_t_base_cooling_cy, assumptions.model_yeardays)

        try:
            f_heat_is_y = np.nan_to_num(1.0 / float(np.sum(self.is_hdd_by))) * np.sum(is_hdd_cy)
            #self.f_cooling_is_y = np.nan_to_num(1.0 / float(np.sum(is_cdd_by))) * np.sum(is_cdd_cy)
            f_cooling_is_y = 1
        except ZeroDivisionError:
            f_heat_is_y = 1
            f_cooling_is_y = 1

        # ========
        # Technology specific profiles
        # ========

        # --Heating technologies

        # Flatten list of all potential heating technologies
        is_space_heating_tech_lists = list(assumptions.tech_list.values())
        all_techs_is_space_heating = [item for sublist in is_space_heating_tech_lists for item in sublist]

        # Apply correction factor for weekend_effect for space heating load profile
        is_fuel_shape_heating_yd_weighted = load_profile.abs_to_rel(
            is_fuel_shape_heating_yd * assumptions.is_weekend_f)

        # - Direct electric heating
        # Remove tech from all space heating techs
        all_techs_is_space_heating = basic_functions.remove_element_from_list(
            all_techs_is_space_heating, 'secondary_heater_electricity')

        load_profiles.add_lp(
            unique_identifier=uuid.uuid4(),
            technologies=assumptions.tech_list['secondary_heating_electricity'],
            enduses=['is_space_heating'],
            sectors=sectors['industry'],
            shape_yd=is_fuel_shape_heating_yd_weighted,
            shape_y_dh=tech_lp['rs_profile_elec_heater_y_dh'],
            model_yeardays=assumptions.model_yeardays)

        # Add flat load profiles for non-electric heating technologies
        load_profiles.add_lp(
            unique_identifier=uuid.uuid4(),
            technologies=all_techs_is_space_heating,
            enduses=['is_space_heating'],
            sectors=sectors['industry'],
            shape_yd=is_fuel_shape_heating_yd_weighted,
            shape_y_dh=flat_shape_y_dh,
            model_yeardays=assumptions.model_yeardays)

        # Apply correction factor for weekend_effect to flat load profile for industry
        flat_shape_yd = flat_shape_yd * assumptions.is_weekend_f
        flat_shape_yd_weighted = load_profile.abs_to_rel(flat_shape_yd)

        # ========
        # Enduse specific profiles
        # ========
        for enduse in enduses['industry']:
            if enduse == "is_space_heating":
                pass # Do not create non regional stock because temp dependent
            else:
                for sector in sectors['industry']:

                    tech_list = helpers.get_nested_dict_key(
                        assumptions.fuel_tech_p_by[enduse][sector])

                    load_profiles.add_lp(
                        unique_identifier=uuid.uuid4(),
                        technologies=tech_list,
                        enduses=[enduse],
                        shape_yd=flat_shape_yd_weighted,
                        shape_y_dh=flat_shape_y_dh,
                        model_yeardays=assumptions.model_yeardays,
                        sectors=[sector])

        # ---------------
        # Load profiles
        # ---------------
        self.load_profiles = load_profiles

        self.f_heat = {
            'residential': f_heat_rs_y,
            'service': f_heat_ss_y,
            'industry': f_heat_is_y}

        self.f_colling = {
            'residential': f_cooling_rs_y,
            'service': f_cooling_ss_y,
            'industry': f_cooling_is_y}
コード例 #19
0
ファイル: read_data.py プロジェクト: nismod/energy_demand
def read_in_results(
        path_result,
        seasons,
        model_yeardays_daytype
    ):
    """Read and post calculate results from txt files
    and store into container

    Arguments
    ---------
    path_result : str
        Paths
    seasons : dict
        seasons
    model_yeardays_daytype : dict
        Daytype of modelled yeardays
    """
    logging.info("... Reading in results")

    lookups = lookup_tables.basic_lookups()

    results_container = {}

    # -----------------
    # Read in demands
    # -----------------
    try:
        results_container['results_enduse_every_year'] = read_enduse_specific_results(
            path_result)
    except:
        pass
    try:
        print("path_result " + str(path_result))
        results_container['ed_fueltype_regs_yh'] = read_results_yh(
            path_result, 'ed_fueltype_regs_yh')
    except:
        pass
    # Read in residential demands
    try:
        results_container['residential_results'] = read_results_yh(
            path_result, 'residential_results')
    except:
        pass

    # Calculate total demand per fueltype for every hour
    try:
        tot_fueltype_yh = {}
        for year in results_container['ed_fueltype_regs_yh']:
            nr_of_fueltypes = results_container['ed_fueltype_regs_yh'][year].shape[0]
            tot_fueltype_yh[year] = np.zeros((nr_of_fueltypes, 8760))

        for year, ed_regs_yh in results_container['ed_fueltype_regs_yh'].items():
            fuel_yh = np.sum(ed_regs_yh, axis=1) #Sum across all regions
            tot_fueltype_yh[year] += fuel_yh

        results_container['tot_fueltype_yh'] = tot_fueltype_yh
    except:
        pass

    # -----------------
    # Peak calculations
    # -----------------
    try:
        results_container['ed_peak_h'] = {}
        results_container['ed_peak_regs_h'] = {}

        for year, ed_fueltype_reg_yh in results_container['ed_fueltype_regs_yh'].items():
            results_container['ed_peak_h'][year] = {}
            results_container['ed_peak_regs_h'][year] = {}

            for fueltype_int, ed_reg_yh in enumerate(ed_fueltype_reg_yh):
                fueltype_str = tech_related.get_fueltype_str(lookups['fueltypes'], fueltype_int)

                # Calculate peak per fueltype for all regions (ed_reg_yh= np.array(fueltype, reg, yh))
                all_regs_yh = np.sum(ed_reg_yh, axis=0)    # sum regs
                peak_h = np.max(all_regs_yh)               # select max of 8760 h
                results_container['ed_peak_h'][year][fueltype_str] = peak_h
                results_container['ed_peak_regs_h'][year][fueltype_str] = np.max(ed_reg_yh, axis=1)

        # -------------
        # Load factors
        # -------------
        results_container['reg_load_factor_y'] = read_lf_y(
            os.path.join(path_result, "result_reg_load_factor_y"))
        results_container['reg_load_factor_yd'] = read_lf_y(
            os.path.join(path_result, "result_reg_load_factor_yd"))

        # -------------
        # Post-calculations
        # -------------
        # Calculate average per season and fueltype for every fueltype
        results_container['av_season_daytype_cy'], results_container['season_daytype_cy'] = calc_av_per_season_fueltype(
            results_container['ed_fueltype_regs_yh'],
            seasons,
            model_yeardays_daytype)

        '''results_container['load_factor_seasons'] = {}
        results_container['load_factor_seasons']['winter'] = read_lf_y(
            os.path.join(path_result, "result_reg_load_factor_winter"))
        results_container['load_factor_seasons']['spring'] = read_lf_y(
            os.path.join(path_result, "result_reg_load_factor_spring"))
        results_container['load_factor_seasons']['summer'] = read_lf_y(
            os.path.join(path_result, "result_reg_load_factor_summer"))
        results_container['load_factor_seasons']['autumn'] = read_lf_y(
            os.path.join(path_result, "result_reg_load_factor_autumn"))'''
    except:
        pass
    logging.info("... Reading in results finished")
    return results_container
コード例 #20
0
ファイル: figs_p2.py プロジェクト: shitabishmam/energy_demand
def plot_fig_spatio_temporal_validation(path_regional_calculations,
                                        path_rolling_elec_demand,
                                        path_temporal_elec_validation,
                                        path_temporal_gas_validation,
                                        path_non_regional_elec_2015,
                                        path_out_plots,
                                        plot_show=False):
    """
    Create plot with regional and non-regional plots for second paper
    Compare hdd calculations and disaggregation of regional and local
    """
    # ---------------------------------------------------------
    # Iterate folders and read out all weather years and stations
    # ---------------------------------------------------------
    all_result_folders = os.listdir(path_regional_calculations)

    paths_folders_result = []
    data_container = defaultdict(dict)
    ed_fueltype_regs_yh = defaultdict(dict)
    weather_yr_station_tot_fueltype_yh = defaultdict(dict)
    residential_results = defaultdict(dict)
    for scenario_folder in all_result_folders:
        result_folders = os.listdir(
            os.path.join(path_regional_calculations, scenario_folder))
        for result_folder in result_folders:
            try:
                split_path_name = result_folder.split("__")
                weather_yr = int(split_path_name[0])

                try:
                    weather_station = int(split_path_name[1])
                except:
                    weather_station = "all_stations"

                paths_folders_result.append(
                    os.path.join(path_regional_calculations, result_folder))

                data = {}
                data['lookups'] = lookup_tables.basic_lookups()
                data['enduses'], data['assumptions'], data[
                    'regions'] = data_loader.load_ini_param(
                        os.path.join(
                            path_regional_calculations,
                            all_result_folders[0]))  # last result folder
                data['assumptions']['seasons'] = date_prop.get_season(
                    year_to_model=2015)
                data['assumptions']['model_yeardays_daytype'], data[
                    'assumptions']['yeardays_month'], data['assumptions'][
                        'yeardays_month_days'] = date_prop.get_yeardays_daytype(
                            year_to_model=2015)

                results_container = read_data.read_in_results(
                    os.path.join(path_regional_calculations, scenario_folder,
                                 "{}__{}".format(weather_yr, weather_station),
                                 'model_run_results_txt'),
                    data['assumptions']['seasons'],
                    data['assumptions']['model_yeardays_daytype'])

                weather_yr_station_tot_fueltype_yh[weather_yr][
                    weather_station] = results_container['tot_fueltype_yh']
                ed_fueltype_regs_yh[weather_yr][
                    weather_station] = results_container['ed_fueltype_regs_yh']
                residential_results[weather_yr][
                    weather_station] = results_container['residential_results']
            except ValueError:
                pass

    data_container['ed_fueltype_regs_yh'] = ed_fueltype_regs_yh
    data_container['tot_fueltype_yh'] = weather_yr_station_tot_fueltype_yh
    data_container['residential_results'] = residential_results
    data_container = dict(data_container)

    # -------------------------------------------------
    # Collect non regional 2015 elec data
    # Calculated with all regional weather stations
    # -------------------------------------------------
    year_non_regional = 2015
    path_with_txt = os.path.join(
        path_non_regional_elec_2015, "{}__{}".format(str(year_non_regional),
                                                     "all_stations"),
        'model_run_results_txt')

    demand_year_non_regional = read_data.read_in_results(
        path_with_txt, data['assumptions']['seasons'],
        data['assumptions']['model_yeardays_daytype'])
    tot_fueltype_yh = demand_year_non_regional['tot_fueltype_yh']

    fueltype_int = tech_related.get_fueltype_int('electricity')

    non_regional_elec_2015 = tot_fueltype_yh[year_non_regional][fueltype_int]

    # ---Collect real electricity data of year 2015
    elec_2015_indo, _ = elec_national_data.read_raw_elec_2015(
        path_rolling_elec_demand)

    # Factor data as total sum is not identical
    f_diff_elec = np.sum(non_regional_elec_2015) / np.sum(elec_2015_indo)
    elec_factored_yh = f_diff_elec * elec_2015_indo

    # *****************************************************************
    # Temporal validation
    # Compare regional and non regional and actual demand over time
    # *****************************************************************
    simulation_yr_to_plot = 2015

    winter_week, spring_week, summer_week, autumn_week = date_prop.get_seasonal_weeks(
    )

    # Peak day
    peak_day, _ = enduse_func.get_peak_day_single_fueltype(elec_factored_yh)

    # Convert days to hours
    period_to_plot = list(range(0, 400))
    period_to_plot = date_prop.get_8760_hrs_from_yeardays(winter_week)
    period_to_plot = date_prop.get_8760_hrs_from_yeardays([peak_day])
    period_to_plot_winter = date_prop.get_8760_hrs_from_yeardays(winter_week)
    period_to_plot_spring = date_prop.get_8760_hrs_from_yeardays(spring_week)

    fig_p2_temporal_validation.run_fig_p2_temporal_validation(
        data_input=data_container['tot_fueltype_yh'],
        weather_yr=2015,
        fueltype_str='electricity',
        simulation_yr_to_plot=simulation_yr_to_plot,  # Simulation year to plot
        period_h=period_to_plot,
        validation_elec_2015=elec_factored_yh,
        non_regional_elec_2015=non_regional_elec_2015,
        fig_name=os.path.join(path_out_plots, "temporal_validation_elec.pdf"),
        titel="yearday: {}".format(peak_day),
        y_lim_val=55,
        plot_validation=False,
        plot_show=plot_show)

    fueltype_gas = tech_related.get_fueltype_int('gas')
    fig_p2_temporal_validation.run_fig_p2_temporal_validation(
        data_input=data_container['tot_fueltype_yh'],
        weather_yr=2015,
        fueltype_str='gas',
        simulation_yr_to_plot=simulation_yr_to_plot,  # Simulation year to plot
        period_h=period_to_plot,
        validation_elec_2015=None,
        non_regional_elec_2015=tot_fueltype_yh[year_non_regional]
        [fueltype_gas],
        fig_name=os.path.join(path_out_plots, "temporal_validation_gas.pdf"),
        titel="yearday: {}".format(peak_day),
        y_lim_val=250,
        plot_validation=False,
        plot_show=plot_show)

    # -------------------
    # Spatial validation (not with maps)
    # -------------------
    # non_regional: All weather station, spatially disaggregated TODO Give BETTER NAMES
    # regional: Only one weather station for whole countr but still data for every region
    weather_yr = 2015
    fig_p2_spatial_val.run(
        simulation_yr_to_plot=simulation_yr_to_plot,
        demand_year_non_regional=demand_year_non_regional[
            'residential_results'][weather_yr],
        demand_year_regional=data_container['residential_results'][weather_yr],
        fueltypes=data['lookups']['fueltypes'],
        fig_path=path_out_plots,
        path_temporal_elec_validation=path_temporal_elec_validation,
        path_temporal_gas_validation=path_temporal_gas_validation,
        regions=data['regions'],
        plot_crit=plot_show)
コード例 #21
0
    def __init__(self,
                 lookup_enduses=None,
                 lookup_sector_enduses=None,
                 base_yr=None,
                 weather_by=None,
                 simulation_end_yr=None,
                 curr_yr=None,
                 sim_yrs=None,
                 paths=None,
                 enduses=None,
                 sectors=None,
                 reg_nrs=None):
        """Constructor
        """
        self.lookup_enduses = lookup_enduses
        self.lookup_sector_enduses = lookup_sector_enduses

        self.submodels_names = lookup_tables.basic_lookups()['submodels_names']
        self.nr_of_submodels = len(self.submodels_names)
        self.fueltypes = lookup_tables.basic_lookups()['fueltypes']
        self.fueltypes_nr = lookup_tables.basic_lookups()['fueltypes_nr']

        self.base_yr = base_yr
        self.weather_by = weather_by
        self.reg_nrs = reg_nrs
        self.simulation_end_yr = simulation_end_yr
        self.curr_yr = curr_yr
        self.sim_yrs = sim_yrs

        # ============================================================
        # Spatially modelled variables
        #
        # If spatial explicit diffusion is modelled, all parameters
        # or technologies having a spatial explicit diffusion need
        # to be defined.
        # ============================================================
        self.spatial_explicit_diffusion = 0  #0: False, 1: True

        # Define all variables which are affected by regional diffusion
        self.spatially_modelled_vars = []  # ['smart_meter_p']

        # Define technologies which are affected by spatial explicit diffusion
        self.techs_affected_spatial_f = ['heat_pumps_electricity']

        # Max penetration speed
        self.speed_con_max = 1  #1.5 # 1: uniform distribution >1: regional differences

        # ============================================================
        # Model calibration factors
        # ============================================================
        #
        #   These calibration factors are used to match the modelled
        #   electrictiy demand better with the validation data.
        #
        #   Weekend effects are used to distribut energy demands
        #   between working and weekend days. With help of these
        #   factors, the demand on weekends and holidays can be
        #   be lowered compared to working days.
        #   This factor can be applied either directly to an enduse
        #   or to the hdd or cdd calculations (to correct cooling
        #   or heating demand)
        #
        #       f_ss_cooling_weekend : float
        #           Weekend effect for cooling enduses
        #       f_ss_weekend : float
        #           WWeekend effect for service submodel enduses
        #       f_is_weekend : float
        #           Weekend effect for industry submodel enduses
        #       f_mixed_floorarea : float
        #           Share of floor_area which is assigned to either
        #           residential or non_residential floor area
        # ------------------------------------------------------------
        self.f_ss_cooling_weekend = 0.45  # Temporal calibration factor
        self.f_ss_weekend = 0.8  # Temporal calibration factor
        self.f_is_weekend = 0.45  # Temporal calibration factor

        # ============================================================
        #   Modelled day related factors
        # ============================================================
        #   model_yeardays_date : dict
        #     Contains for the base year for each days
        #     the information wheter this is a working or holiday
        # ------------------------------------------------------------
        self.model_yeardays = list(range(365))

        # Calculate dates
        self.model_yeardays_date = []
        for yearday in self.model_yeardays:
            self.model_yeardays_date.append(
                date_prop.yearday_to_date(base_yr, yearday))

        # ============================================================
        #   Dwelling stock related assumptions
        # ============================================================
        #
        #   Assumptions to generate a virtual dwelling stock
        #
        #       assump_diff_floorarea_pp : float
        #           Change in floor area per person (%, 1=100%)
        #       assump_diff_floorarea_pp_yr_until_changed : int
        #           Year until this change in floor area happens
        #       dwtype_distr_by : dict
        #           Housing Stock Distribution by Type
        #               Source: UK Housing Energy Fact File, Table 4c
        #       dwtype_distr_fy : dict
        #           welling type distribution end year
        #               Source: UK Housing Energy Fact File, Table 4c
        #       dwtype_floorarea_by : dict
        #           Floor area per dwelling type (Annex Table 3.1)
        #               Source: UK Housing Energy Fact File, Table 4c
        #       dwtype_floorarea_fy : dict
        #           Floor area per dwelling type
        #               Source: UK Housing Energy Fact File, Table 4c
        #       dwtype_age_distr : dict
        #           Floor area per dwelling type
        #               Source: Housing Energy Fact Sheet)
        #       yr_until_changed : int
        #           Year until change is realised
        #
        # https://www.gov.uk/government/statistics/english-housing-survey-2014-to-2015-housing-stock-report
        # ------------------------------------------------------------
        yr_until_changed_all_things = 2050

        self.dwtype_distr_by = {
            'semi_detached': 0.26,
            'terraced': 0.283,
            'flat': 0.203,
            'detached': 0.166,
            'bungalow': 0.088
        }

        self.dwtype_distr_fy = {
            'yr_until_changed': yr_until_changed_all_things,
            'semi_detached': 0.26,
            'terraced': 0.283,
            'flat': 0.203,
            'detached': 0.166,
            'bungalow': 0.088
        }

        self.dwtype_floorarea_by = {
            'semi_detached': 96,
            'terraced': 82.5,
            'flat': 61,
            'detached': 147,
            'bungalow': 77
        }

        self.dwtype_floorarea_fy = {
            'yr_until_changed': yr_until_changed_all_things,
            'semi_detached': 96,
            'terraced': 82.5,
            'flat': 61,
            'detached': 147,
            'bungalow': 77
        }

        # (Average builing age within age class, fraction)
        # The newest category of 2015 is added to implement change in refurbishing rate
        # For the base year, this is set to zero (if e.g. with future scenario set to 5%, then
        # proportionally to base year distribution number of houses are refurbished)
        self.dwtype_age_distr = {
            2015: {
                '1918': 0.21,
                '1941': 0.36,
                '1977.5': 0.3,
                '1996.5': 0.08,
                '2002': 0.05
            }
        }

        # ============================================================
        #  Scenario drivers
        # ============================================================
        #
        #   For every enduse the relevant factors which affect enduse
        #   consumption can be added in a list.
        #
        #   Note:   If e.g. floorarea and population are added, the
        #           effects will be overestimates (i.e. no multi-
        #           collinearity are considered).
        #
        #   scenario_drivers : dict
        #     Scenario drivers per enduse
        # ------------------------------------------------------------
        self.scenario_drivers = {

            # --Residential
            'rs_space_heating':
            ['floorarea',
             'hlc'],  # Do not use HDD or pop because otherweise double count
            'rs_water_heating': ['population'],
            'rs_lighting': ['population', 'floorarea'],
            'rs_cooking': ['population'],
            'rs_cold': ['population'],
            'rs_wet': ['population'],
            'rs_consumer_electronics': ['population', 'gva'],
            'rs_home_computing': ['population'],

            # --Service
            'ss_space_heating': ['floorarea'],
            'ss_water_heating': ['population'],
            'ss_lighting': ['floorarea'],
            'ss_catering': ['population'],
            'ss_ICT_equipment': ['population'],
            'ss_cooling_humidification': ['floorarea', 'population'],
            'ss_fans': ['floorarea', 'population'],
            'ss_small_power': ['population'],
            'ss_cooled_storage': ['population'],
            'ss_other_gas': ['population'],
            'ss_other_electricity': ['population'],

            # Industry
            'is_high_temp_process': ['gva'],
            'is_low_temp_process': ['gva'],
            'is_drying_separation': ['gva'],
            'is_motors': ['gva'],
            'is_compressed_air': ['gva'],
            'is_lighting': ['gva'],
            'is_space_heating': ['gva'],
            'is_other': ['gva'],
            'is_refrigeration': ['gva']
        }

        # ============================================================
        #   Cooling related assumptions
        # ============================================================
        #   assump_cooling_floorarea : int
        #       The percentage of cooled floor space in the base year
        #
        #   Literature
        #   ----------
        #   Abela, A. et al. (2016). Study on Energy Use by Air
        #   Conditioning. Bre, (June), 31. Retrieved from
        #   https://www.bre.co.uk/filelibrary/pdf/projects/aircon-energy-use/StudyOnEnergyUseByAirConditioningFinalReport.pdf
        # ------------------------------------------------------------

        # See Abela et al. (2016) & Carbon Trust. (2012). Air conditioning. Maximising comfort, minimising energy consumption
        self.cooled_ss_floorarea_by = 0.35

        # ============================================================
        # Smart meter related base year assumptions
        # ============================================================
        #   smart_meter_p_by : int
        #       The percentage of households with smart meters in by
        # ------------------------------------------------------------
        self.smart_meter_assump = {}

        # Currently in 2017 8.6 mio smart meter installed of 27.2 mio households --> 31.6%
        # https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/671930/Smart_Meters_2017_update.pdf)
        # In 2015, 5.8 % percent of all househods had one: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/533060/2016_Q1_Smart_Meters_Report.pdf
        self.smart_meter_assump['smart_meter_p_by'] = 0.05

        # Long term smart meter induced general savings, purley as
        # a result of having a smart meter (e.g. 0.03 --> 3% savings)
        # DECC 2015: Smart Metering Early Learning Project: Synthesis report
        # https://www.gov.uk/government/publications/smart-metering-early-learning-project-and-small-scale-behaviour-trials
        # Reasonable assumption is between 0.03 and 0.01 (DECC 2015)
        self.smart_meter_assump['savings_smart_meter'] = {

            # Residential
            'rs_cold': 0.03,
            'rs_cooking': 0.03,
            'rs_lighting': 0.03,
            'rs_wet': 0.03,
            'rs_consumer_electronics': 0.03,
            'rs_home_computing': 0.03,
            'rs_space_heating': 0.03,
            'rs_water_heating': 0.03,

            # Service
            'ss_space_heating': 0.03,
            'ss_water_heating': 0.03,
            'ss_cooling_humidification': 0.03,
            'ss_fans': 0.03,
            'ss_lighting': 0.03,
            'ss_catering': 0.03,
            'ss_small_power': 0.03,
            'ss_ICT_equipment': 0.03,
            'ss_cooled_storage': 0.03,
            'ss_other_gas': 0.03,
            'ss_other_electricity': 0.03,

            # Industry submodule
            'is_high_temp_process': 0,
            'is_low_temp_process': 0,
            'is_drying_separation': 0,
            'is_motors': 0,
            'is_compressed_air': 0,
            'is_lighting': 0,
            'is_space_heating': 0,
            'is_other': 0,
            'is_refrigeration': 0
        }

        # ============================================================
        # Base temperature assumptions
        # ============================================================
        #
        #   Parameters related to smart metering
        #
        #   rs_t_heating : int
        #       Residential submodel base temp of heating of base year
        #   rs_t_cooling_by : int
        #       Residential submodel base temp of cooling of base year
        #   ...
        #
        #   Note
        #   ----
        #   Because demand for cooling cannot directly be linked to
        #   calculated cdd, the paramters 'ss_t_base_cooling' is used
        #   as a calibration factor. By artifiallcy lowering this
        #   parameter, the energy demand assignement over the days
        #   in a year is improved.
        # ------------------------------------------------------------
        t_bases = {
            'rs_t_heating': 15.5,
            'ss_t_heating': 15.5,
            'ss_t_cooling': 5,
            'is_t_heating': 15.5
        }

        self.t_bases = DummyClass(t_bases)

        # ============================================================
        # Enduses lists affed by hdd/cdd
        # ============================================================
        #
        #   These lists show for which enduses temperature related
        #   calculations are performed.
        #
        #   enduse_space_heating : list
        #       All enduses for which hdd are used for yd calculations
        #   ss_enduse_space_cooling : list
        #       All service submodel enduses for which cdd are used for
        #       yd calculations
        # ------------------------------------------------------------
        self.enduse_space_heating = [
            'rs_space_heating', 'ss_space_heating', 'is_space_heating'
        ]

        self.ss_enduse_space_cooling = ['ss_cooling_humidification']

        # ============================================================
        # Industry related
        #
        # High temperature processing (high_temp_ process) dominates
        # energy consumption in the iron and steel
        #
        # ---- Steel production - Enduse: is_high_temp_process, Sector: basic_metals
        # With industry service switch, the future shares of 'is_temp_high_process'
        # in sector 'basic_metals' can be set for 'basic_oxygen_furnace',
        # 'electric_arc_furnace', and 'SNG_furnace' can be specified
        #
        # ---- Cement production - Enduse: is_high_temp_process, Sector: non_metallic_mineral_products
        # Dry kilns, semidry kilns can be set
        # ============================================================

        # Share of cold rolling in steel manufacturing
        self.p_cold_rolling_steel_by = 0.2  # Estimated based on https://aceroplatea.es/docs/EuropeanSteelFigures_2015.pdf
        self.eff_cold_rolling_process = 1.8  # 80% more efficient than hot rolling Fruehan et al. (2002)
        self.eff_hot_rolling_process = 1.0  # 100% assumed efficiency

        # ============================================================
        # Assumption related to heat pump technologies
        # ============================================================
        #
        #   Assumptions related to technologies
        #
        #   gshp_fraction : list
        #       Fraction of installed gshp_fraction heat pumps in base year
        #       ASHP = 1 - gshp_fraction
        # ------------------------------------------------------------
        self.gshp_fraction = 0.1

        # Load defined technologies
        self.technologies, self.tech_list = read_data.read_technologies(
            paths['path_technologies'])

        self.installed_heat_pump_by = tech_related.generate_ashp_gshp_split(
            self.gshp_fraction)

        # Add heat pumps to technologies
        self.technologies, self.tech_list[
            'heating_non_const'], self.heat_pumps = tech_related.generate_heat_pump_from_split(
                self.technologies, self.installed_heat_pump_by, self.fueltypes)

        # ============================================================
        # Fuel Stock Definition
        # Provide for every fueltype of an enduse the share of fuel
        # which is used by technologies in the base year
        # ============================================================$
        fuel_tech_p_by = fuel_shares.assign_by_fuel_tech_p(
            enduses, sectors, self.fueltypes, self.fueltypes_nr)

        # ========================================
        # Get technologies of an enduse and sector
        # ========================================
        self.specified_tech_enduse_by = helpers.get_def_techs(fuel_tech_p_by)

        _specified_tech_enduse_by = helpers.add_undef_techs(
            self.heat_pumps, self.specified_tech_enduse_by,
            self.enduse_space_heating)
        self.specified_tech_enduse_by = _specified_tech_enduse_by

        # ========================================
        # General other info
        # ========================================
        self.seasons = date_prop.get_season(year_to_model=base_yr)
        self.model_yeardays_daytype, self.yeardays_month, self.yeardays_month_days = date_prop.get_yeardays_daytype(
            year_to_model=base_yr)

        # ========================================
        # Helper functions
        # ========================================
        self.fuel_tech_p_by, self.specified_tech_enduse_by, self.technologies = tech_related.insert_placholder_techs(
            self.technologies, fuel_tech_p_by, self.specified_tech_enduse_by)

        # ========================================
        # Calculations with assumptions
        # ========================================
        self.cdd_weekend_cfactors = hdd_cdd.calc_weekend_corr_f(
            self.model_yeardays_daytype, self.f_ss_cooling_weekend)

        self.ss_weekend_f = hdd_cdd.calc_weekend_corr_f(
            self.model_yeardays_daytype, self.f_ss_weekend)

        self.is_weekend_f = hdd_cdd.calc_weekend_corr_f(
            self.model_yeardays_daytype, self.f_is_weekend)

        # ========================================
        # Testing
        # ========================================
        testing_functions.testing_fuel_tech_shares(self.fuel_tech_p_by)

        testing_functions.testing_tech_defined(self.technologies,
                                               self.specified_tech_enduse_by)
コード例 #22
0
def spatio_temporal_val(ed_fueltype_national_yh, ed_fueltype_regs_yh,
                        result_paths, paths, regions, seasons,
                        model_yeardays_daytype, plot_crit):
    """Validate spatial and temporal energy demands

    Info
    -----
    Because the floor area is only availabe for LADs from 2001,
    the LADs are converted to 2015 LADs.
    """
    logging.info("... temporal validation")

    fueltypes = lookup_tables.basic_lookups()['fueltypes']
    # -------------------------------------------
    # Spatial validation after calculations
    # -------------------------------------------
    subnational_elec = data_loader.read_lad_demands(
        paths['val_subnational_elec'])
    subnational_gas = data_loader.read_lad_demands(
        paths['val_subnational_gas'])

    # Create fueltype secific dict
    fuel_elec_regs_yh = {}
    for region_array_nr, region in enumerate(regions):
        fuel_elec_regs_yh[region] = np.sum(
            ed_fueltype_regs_yh[fueltypes['electricity']][region_array_nr])

    # Create fueltype secific dict
    fuel_gas_regs_yh = {}
    for region_array_nr, region in enumerate(regions):
        fuel_gas_regs_yh[region] = np.sum(
            ed_fueltype_regs_yh[fueltypes['gas']][region_array_nr])

    # ----------------------------------------
    # Remap demands between 2011 and 2015 LADs
    # ----------------------------------------
    subnational_elec = map_LAD_2011_2015(subnational_elec)
    subnational_gas = map_LAD_2011_2015(subnational_gas)
    fuel_elec_regs_yh = map_LAD_2011_2015(fuel_elec_regs_yh)
    fuel_gas_regs_yh = map_LAD_2011_2015(fuel_gas_regs_yh)

    spatial_validation(fuel_elec_regs_yh,
                       subnational_elec,
                       regions,
                       'elec',
                       fig_name=os.path.join(
                           result_paths['data_results_validation'],
                           'validation_spatial_elec_post_calcualtion.pdf'),
                       label_points=False,
                       plotshow=plot_crit)

    spatial_validation(fuel_gas_regs_yh,
                       subnational_gas,
                       regions,
                       'gas',
                       fig_name=os.path.join(
                           result_paths['data_results_validation'],
                           'validation_spatial_gas_post_calcualtion.pdf'),
                       label_points=False,
                       plotshow=plot_crit)

    # -------------------------------------------
    # Temporal validation (hourly for national)
    # -------------------------------------------
    # Read validation data
    elec_2015_indo, elec_2015_itsdo = elec_national_data.read_raw_elec_2015(
        paths['val_nat_elec_data'])

    f_diff_elec = np.sum(ed_fueltype_national_yh[
        fueltypes['electricity']]) / np.sum(elec_2015_indo)
    logging.info("... ed diff modellend and real [p] %s: ",
                 (1 - f_diff_elec) * 100)

    elec_factored_yh = f_diff_elec * elec_2015_indo

    temporal_validation(result_paths,
                        ed_fueltype_national_yh[fueltypes['electricity']],
                        elec_factored_yh, plot_crit)

    # ---------------------------------------------------
    # Calculate average season and daytypes and plot
    # ---------------------------------------------------
    logging.info("...calculate average data and plot per season and fueltype")

    calc_av_lp_modelled, calc_lp_modelled = load_profile.calc_av_lp(
        ed_fueltype_national_yh[fueltypes['electricity']], seasons,
        model_yeardays_daytype)

    calc_av_lp_real, calc_lp_real = load_profile.calc_av_lp(
        elec_factored_yh, seasons, model_yeardays_daytype)

    # Plot average daily loads
    fig_load_profile_dh_multiple.run(
        path_fig_folder=result_paths['data_results_validation'],
        path_plot_fig=os.path.join(result_paths['data_results_validation'],
                                   'validation_all_season_daytypes.pdf'),
        calc_av_lp_modelled=calc_av_lp_modelled,
        calc_av_lp_real=calc_av_lp_real,
        calc_lp_modelled=calc_lp_modelled,
        calc_lp_real=calc_lp_real,
        plot_peak=True,
        plot_radar=False,
        plot_all_entries=False,
        plot_max_min_polygon=True,
        plotshow=False,
        max_y_to_plot=60,
        fueltype_str=False,
        year=False)

    # ---------------------------------------------------
    # Validation of national electrictiy demand for peak
    # ---------------------------------------------------
    logging.debug("...validation of peak data: compare peak with data")

    # Because the coldest day is not the same for every region,
    # the coldest day needs to be defined manually or defined
    # by getting the hours with maximum electricity demand

    # Peak across all fueltypes WARNING: Fueltype specific
    peak_day_all_fueltypes = enduse_func.get_peak_day_all_fueltypes(
        ed_fueltype_national_yh)
    logging.info("Peak day 'peak_day_all_fueltypes': " +
                 str(peak_day_all_fueltypes))

    fueltype = fueltypes['electricity']
    peak_day_electricity, _ = enduse_func.get_peak_day_single_fueltype(
        ed_fueltype_national_yh[fueltype])
    logging.info("Peak day 'peak_day_electricity': " +
                 str(peak_day_electricity))

    elec_national_data.compare_peak(
        "validation_peak_elec_day_all_fueltypes.pdf",
        result_paths['data_results_validation'],
        elec_2015_indo[peak_day_all_fueltypes], ed_fueltype_national_yh[
            fueltypes['electricity']][peak_day_all_fueltypes],
        peak_day_all_fueltypes)

    elec_national_data.compare_peak(
        "validation_peak_elec_day_only_electricity.pdf",
        result_paths['data_results_validation'],
        elec_2015_indo[peak_day_electricity], ed_fueltype_national_yh[
            fueltypes['electricity']][peak_day_electricity],
        peak_day_electricity)

    # Manual peak day
    peak_day = 19
    elec_national_data.compare_peak(
        "validation_elec_peak_day_{}.pdf".format(peak_day),
        result_paths['data_results_validation'], elec_factored_yh[peak_day],
        ed_fueltype_national_yh[fueltypes['electricity']][peak_day], peak_day)

    peak_day = 33
    elec_national_data.compare_peak(
        "validation_elec_peak_day_{}.pdf".format(peak_day),
        result_paths['data_results_validation'], elec_factored_yh[peak_day],
        ed_fueltype_national_yh[fueltypes['electricity']][peak_day], peak_day)

    peak_day_real_electricity, _ = enduse_func.get_peak_day_single_fueltype(
        elec_2015_indo)
    logging.info("Peak day 'peak_day_electricity': " +
                 str(peak_day_real_electricity))

    #raise Exception
    elec_national_data.compare_peak(
        "validation_elec_peak_day_{}.pdf".format(peak_day_real_electricity),
        result_paths['data_results_validation'], elec_factored_yh[peak_day],
        ed_fueltype_national_yh[fueltypes['electricity']]
        [peak_day_real_electricity], peak_day_real_electricity)

    # ---------------------------------------------------
    # Validate boxplots for every hour (temporal validation)
    # ---------------------------------------------------
    elec_national_data.compare_results_hour_boxplots(
        "validation_hourly_boxplots_electricity_01.pdf",
        result_paths['data_results_validation'], elec_2015_indo,
        ed_fueltype_national_yh[fueltypes['electricity']])

    return
コード例 #23
0
def spatial_validation_lad_level(disaggregated_fuel, data_results_validation,
                                 paths, regions, reg_coord, plot_crit):
    """Spatial validation
    """
    fuel_elec_regs_yh = {}
    fuel_gas_regs_yh = {}
    fuel_gas_residential_regs_yh = {}
    fuel_gas_non_residential_regs_yh = {}
    fuel_elec_residential_regs_yh = {}
    fuel_elec_non_residential_regs_yh = {}

    lookups = lookup_tables.basic_lookups()
    # -------------------------------------------
    # Spatial validation
    # -------------------------------------------
    subnational_elec = data_loader.read_lad_demands(
        paths['val_subnational_elec'])
    subnational_elec_residential = data_loader.read_lad_demands(
        paths['val_subnational_elec_residential'])
    subnational_elec_non_residential = data_loader.read_lad_demands(
        paths['val_subnational_elec_non_residential'])
    subnational_gas = data_loader.read_lad_demands(
        paths['val_subnational_gas'])
    subnational_gas_residential = data_loader.read_lad_demands(
        paths['val_subnational_gas_residential'])
    subnational_gas_non_residential = data_loader.read_lad_demands(
        paths['val_subnational_gas_non_residential'])
    logging.info("compare total II {}  {}".format(
        sum(subnational_gas.values()),
        sum(subnational_gas_residential.values())))

    # Create fueltype secific dict
    for region in regions:
        fuel_elec_regs_yh[region] = disaggregated_fuel[
            'tot_disaggregated_regs'][region][lookups['fueltypes']
                                              ['electricity']]
        fuel_elec_residential_regs_yh[region] = disaggregated_fuel[
            'tot_disaggregated_regs_residenital'][region][lookups['fueltypes']
                                                          ['electricity']]
        fuel_elec_non_residential_regs_yh[region] = disaggregated_fuel[
            'tot_disaggregated_regs_non_residential'][region][
                lookups['fueltypes']['electricity']]
        fuel_gas_regs_yh[region] = disaggregated_fuel[
            'tot_disaggregated_regs'][region][lookups['fueltypes']['gas']]
        fuel_gas_residential_regs_yh[region] = disaggregated_fuel[
            'tot_disaggregated_regs_residenital'][region][lookups['fueltypes']
                                                          ['gas']]
        fuel_gas_non_residential_regs_yh[region] = disaggregated_fuel[
            'tot_disaggregated_regs_non_residential'][region][
                lookups['fueltypes']['gas']]

    # ----------------------------------------
    # Remap demands between 2011 and 2015 LADs
    # ----------------------------------------
    subnational_elec = map_LAD_2011_2015(subnational_elec)
    subnational_elec_residential = map_LAD_2011_2015(
        subnational_elec_residential)
    subnational_elec_non_residential = map_LAD_2011_2015(
        subnational_elec_non_residential)

    subnational_gas = map_LAD_2011_2015(subnational_gas)
    subnational_gas_residential = map_LAD_2011_2015(
        subnational_gas_residential)
    subnational_gas_non_residential = map_LAD_2011_2015(
        subnational_gas_non_residential)

    fuel_elec_regs_yh = map_LAD_2011_2015(fuel_elec_regs_yh)
    fuel_elec_residential_regs_yh = map_LAD_2011_2015(
        fuel_elec_residential_regs_yh)
    fuel_elec_non_residential_regs_yh = map_LAD_2011_2015(
        fuel_elec_non_residential_regs_yh)

    fuel_gas_regs_yh = map_LAD_2011_2015(fuel_gas_regs_yh)
    fuel_gas_residential_regs_yh = map_LAD_2011_2015(
        fuel_gas_residential_regs_yh)
    fuel_gas_non_residential_regs_yh = map_LAD_2011_2015(
        fuel_gas_non_residential_regs_yh)

    logging.info("compare total {}  {}".format(
        sum(fuel_gas_residential_regs_yh.values()),
        sum(fuel_gas_regs_yh.values())))

    # --------------------------------------------
    # Correct REAL Values that sum is the same
    # ----------------------------------------------
    data_inputlist = [
        (fuel_elec_residential_regs_yh,
         subnational_elec_residential),  # domestic
        (fuel_elec_non_residential_regs_yh, subnational_elec_non_residential)
    ]  # nondomestics

    spatial_validation_multiple(reg_coord=reg_coord,
                                input_data=data_inputlist,
                                regions=regions,
                                fueltype_str='elec',
                                fig_name=os.path.join(
                                    data_results_validation,
                                    'validation_multiple_elec.pdf'),
                                label_points=False,
                                plotshow=plot_crit)

    data_inputlist = [
        (fuel_gas_residential_regs_yh,
         subnational_gas_residential),  # domestic
        (fuel_gas_non_residential_regs_yh, subnational_gas_non_residential)
    ]  # nondomestics

    spatial_validation_multiple(reg_coord=reg_coord,
                                input_data=data_inputlist,
                                regions=regions,
                                fueltype_str='gas',
                                fig_name=os.path.join(
                                    data_results_validation,
                                    'validation_multiple_gas.pdf'),
                                label_points=False,
                                plotshow=plot_crit)

    logging.info("... Validation of electricity")
    spatial_validation(fuel_elec_regs_yh,
                       subnational_elec,
                       regions,
                       'elec',
                       os.path.join(data_results_validation,
                                    'validation_spatial_elec.pdf'),
                       label_points=True,
                       plotshow=plot_crit)

    logging.info("... Validation of residential electricity")
    spatial_validation(fuel_elec_residential_regs_yh,
                       subnational_elec_residential,
                       regions,
                       'elec',
                       os.path.join(data_results_validation,
                                    'validation_spatial_residential_elec.pdf'),
                       label_points=True,
                       plotshow=plot_crit)

    logging.info("... Validation of non-residential electricity")
    spatial_validation(fuel_elec_non_residential_regs_yh,
                       subnational_elec_non_residential,
                       regions,
                       'elec',
                       os.path.join(
                           data_results_validation,
                           'validation_spatial_non_residential_elec.pdf'),
                       label_points=True,
                       plotshow=plot_crit)

    logging.info("... Validation of gas")
    spatial_validation(fuel_gas_regs_yh,
                       subnational_gas,
                       regions,
                       'gas',
                       os.path.join(data_results_validation,
                                    'validation_spatial_gas.pdf'),
                       label_points=True,
                       plotshow=plot_crit)

    logging.info("... Validation of residential gas")
    spatial_validation(fuel_gas_residential_regs_yh,
                       subnational_gas_residential,
                       regions,
                       'gas',
                       os.path.join(data_results_validation,
                                    'validation_spatial_residential_gas.pdf'),
                       label_points=True,
                       plotshow=plot_crit)

    logging.info("... Validation of non residential gas")
    spatial_validation(fuel_gas_non_residential_regs_yh,
                       subnational_gas_non_residential,
                       regions,
                       'gas',
                       os.path.join(
                           data_results_validation,
                           'validation_spatial_non_residential_gas.pdf'),
                       label_points=True,
                       plotshow=plot_crit)

    return
コード例 #24
0
def test_function_fuel_sum(
        data,
        fuel_disagg,
        mode_constrained,
        space_heating_enduses
    ):
    """ Sum raw disaggregated fuel data
    """
    lookups = lookup_tables.basic_lookups()
    fuel_in = 0
    fuel_in_solid_fuel = 0
    fuel_in_gas = 0
    fuel_in_elec = 0
    fuel_in_oil = 0
    fuel_in_heat = 0
    fuel_in_hydrogen = 0
    fuel_in_biomass = 0
    tot_heating = 0
    dummy_sector = None
    for region in fuel_disagg['residential']:
        for enduse in fuel_disagg['residential'][region]:
            fuel_in += np.sum(fuel_disagg['residential'][region][enduse][dummy_sector])
            fuel_in_heat += np.sum(fuel_disagg['residential'][region][enduse][dummy_sector][lookups['fueltypes']['heat']])

            if mode_constrained == False and enduse in space_heating_enduses: #Exclude inputs for heating
                tot_heating += np.sum(fuel_disagg['residential'][region][enduse][dummy_sector])
            else:
                fuel_in_elec += np.sum(fuel_disagg['residential'][region][enduse][dummy_sector][lookups['fueltypes']['electricity']])
                fuel_in_gas += np.sum(fuel_disagg['residential'][region][enduse][dummy_sector][lookups['fueltypes']['gas']])
                fuel_in_hydrogen += np.sum(fuel_disagg['residential'][region][enduse][dummy_sector][lookups['fueltypes']['hydrogen']])
                fuel_in_oil += np.sum(fuel_disagg['residential'][region][enduse][dummy_sector][lookups['fueltypes']['oil']])
                fuel_in_solid_fuel += np.sum(fuel_disagg['residential'][region][enduse][dummy_sector][lookups['fueltypes']['solid_fuel']])
                fuel_in_biomass += np.sum(fuel_disagg['residential'][region][enduse][dummy_sector][lookups['fueltypes']['biomass']])

    for region in fuel_disagg['service']:
        for enduse in fuel_disagg['service'][region]:
            for sector in fuel_disagg['service'][region][enduse]:
                fuel_in += np.sum(fuel_disagg['service'][region][enduse][sector])
                fuel_in_heat += np.sum(fuel_disagg['service'][region][enduse][sector][lookups['fueltypes']['heat']])

                if mode_constrained == False and enduse in space_heating_enduses:
                    tot_heating += np.sum(fuel_disagg['service'][region][enduse][sector])
                else:
                    fuel_in_elec += np.sum(fuel_disagg['service'][region][enduse][sector][lookups['fueltypes']['electricity']])
                    fuel_in_gas += np.sum(fuel_disagg['service'][region][enduse][sector][lookups['fueltypes']['gas']])
                    fuel_in_hydrogen += np.sum(fuel_disagg['service'][region][enduse][sector][lookups['fueltypes']['hydrogen']])
                    fuel_in_oil += np.sum(fuel_disagg['service'][region][enduse][sector][lookups['fueltypes']['oil']])
                    fuel_in_solid_fuel += np.sum(fuel_disagg['service'][region][enduse][sector][lookups['fueltypes']['solid_fuel']])
                    fuel_in_biomass += np.sum(fuel_disagg['service'][region][enduse][sector][lookups['fueltypes']['biomass']])
                
    for region in fuel_disagg['industry']:
        for enduse in fuel_disagg['industry'][region]:
            for sector in fuel_disagg['industry'][region][enduse]:
                fuel_in += np.sum(fuel_disagg['industry'][region][enduse][sector])
                fuel_in_heat += np.sum(fuel_disagg['industry'][region][enduse][sector][lookups['fueltypes']['heat']])

                if mode_constrained == False and enduse in space_heating_enduses:
                    tot_heating += np.sum(fuel_disagg['industry'][region][enduse][sector])
                else:
                    fuel_in_elec += np.sum(fuel_disagg['industry'][region][enduse][sector][lookups['fueltypes']['electricity']])
                    fuel_in_gas += np.sum(fuel_disagg['industry'][region][enduse][sector][lookups['fueltypes']['gas']])
                    fuel_in_hydrogen += np.sum(fuel_disagg['industry'][region][enduse][sector][lookups['fueltypes']['hydrogen']])
                    fuel_in_oil += np.sum(fuel_disagg['industry'][region][enduse][sector][lookups['fueltypes']['oil']])
                    fuel_in_solid_fuel += np.sum(fuel_disagg['industry'][region][enduse][sector][lookups['fueltypes']['solid_fuel']])
                    fuel_in_biomass += np.sum(fuel_disagg['industry'][region][enduse][sector][lookups['fueltypes']['biomass']])

    out_dict = {
        "fuel_in": fuel_in,
        "fuel_in_biomass": fuel_in_biomass,
        "fuel_in_elec": fuel_in_elec,
        "fuel_in_gas": fuel_in_gas,
        "fuel_in_heat": fuel_in_heat,
        "fuel_in_hydrogen": fuel_in_hydrogen,
        "fuel_in_solid_fuel": fuel_in_solid_fuel,
        "fuel_in_oil": fuel_in_oil,
        "tot_heating": tot_heating}

    return out_dict
コード例 #25
0
                data['assumptions'].submodels_names)

        # --------------------------
        # Write out all calculations
        # --------------------------
        if config['CRITERIA']['write_txt_additional_results']:
            if config['CRITERIA']['crit_plot_enduse_lp']:

                # Maybe move to result folder in a later step
                path_folder_lp = os.path.join(data['weather_yr_result_paths']['data_results'], 'individual_enduse_lp')
                basic_functions.delete_folder(path_folder_lp)
                basic_functions.create_folder(path_folder_lp)
                winter_week, _, _, _ = date_prop.get_seasonal_weeks()

                # Plot electricity
                fueltype_int_elec = lookup_tables.basic_lookups()['fueltypes']['electricity']
                for enduse, ed_yh in sim_obj.tot_fuel_y_enduse_specific_yh.items():
                    fig_enduse_yh.run(
                        name_fig="individ__electricity_{}_{}".format(enduse, sim_yr),
                        path_result=path_folder_lp,
                        ed_yh=ed_yh[fueltype_int_elec],
                        days_to_plot=winter_week)

            # -------------------------------------------
            # Write annual results to txt files
            # -------------------------------------------
            path_runs = data['weather_yr_result_paths']['data_results_model_runs']

            print("... Start writing results to file: " + str(path_runs))
            plot_only_selection = True
            if plot_only_selection:
コード例 #26
0
def process_scenarios(path_to_scenarios, year_to_model=2015):
    """Iterate folder with scenario results and plot charts

    Arguments
    ----------
    path_to_scenarios : str
        Path to folders with stored results
    year_to_model : int, default=2015
        Year of base year
    """
    # -----------
    # Charts to plot
    # -----------
    heat_pump_range_plot = False        # Plot of changing scenario values stored in scenario name
    plot_multiple_cross_charts = True   # Compare cross charts of different scenario
    comparison_year = 2050
    year_to_plot = 2050

    # Delete folder results if existing
    path_result_folder = os.path.join(
        path_to_scenarios, "__results_multiple_scenarios")

    basic_functions.delete_folder(path_result_folder)

    seasons = date_prop.get_season(
        year_to_model=year_to_model)

    model_yeardays_daytype, _, _ = date_prop.get_yeardays_daytype(
        year_to_model=year_to_model)

    lookups = lookup_tables.basic_lookups()

    # Get all folders with scenario run results (name of folder is scenario)
    scenarios = os.listdir(path_to_scenarios)

    # Simulation information is read in from .ini file for results
    path_fist_scenario = os.path.join(path_to_scenarios, scenarios[0])
    enduses, assumptions, regions = data_loader.load_ini_param(
        path_fist_scenario)

    # -------------------------------
    # Iterate folders and get results
    # -------------------------------
    scenario_data = {}
    for scenario in scenarios:
        scenario_data[scenario] = {}

        all_stations = os.listdir(
            os.path.join(path_to_scenarios, scenario))

        _to_igore = [
            'infoparam.txt',
            'model_run_pop',
            'PDF_validation', 'model_run_sim_param.ini']

        for station in all_stations:
            if station not in _to_igore:

                path_to_result_files = os.path.join(
                    path_to_scenarios,
                    scenario,
                    station,
                    'model_run_results_txt')

                scenario_data[scenario] = read_data.read_in_results(
                    path_result=path_to_result_files,
                    seasons=seasons,
                    model_yeardays_daytype=model_yeardays_daytype)
            else:
                pass

    # Create result folder
    basic_functions.create_folder(path_result_folder)

    # -------------------------------
    # Generate plot with heat pump ranges
    # -------------------------------
    if heat_pump_range_plot:

        plotting_multiple_scenarios.plot_heat_pump_chart(
            lookups,
            regions,
            scenario_data,
            fig_name=os.path.join(path_result_folder, "comparison_hp_service_switch_and_lf.pdf"),
            fueltype_str_input='electricity',
            plotshow=True)

    # -------------------------------
    # Compare cross charts for different scenario
    # Ideally only compare two scenario
    # -------------------------------
    if plot_multiple_cross_charts:
        fig_cross_graphs.plot_cross_graphs_scenarios(
            base_yr=2015,
            comparison_year=comparison_year,
            regions=regions,
            scenario_data=scenario_data,
            fueltype_int=lookups['fueltypes']['electricity'],
            fueltype_str='electricity',
            fig_name=os.path.join(path_result_folder, "cross_chart_electricity.pdf"),
            label_points=False,
            plotshow=False)

        fig_cross_graphs.plot_cross_graphs_scenarios(
            base_yr=2015,
            comparison_year=comparison_year,
            regions=regions,
            scenario_data=scenario_data,
            fueltype_int=lookups['fueltypes']['gas'],
            fueltype_str='gas',
            fig_name=os.path.join(path_result_folder, "cross_chart_gas.pdf"),
            label_points=False,
            plotshow=False)

    # -------------------------------
    # Plot total demand for every year in line plot
    # -------------------------------
    plotting_multiple_scenarios.plot_tot_fueltype_y_over_time(
        scenario_data,
        lookups['fueltypes'],
        fueltypes_to_plot=['electricity', 'gas'],
        fig_name=os.path.join(path_result_folder, "tot_y_multiple_fueltypes.pdf"),
        txt_name=os.path.join(path_result_folder, "tot_y_multiple_fueltypes.txt"),
        plotshow=False)

    plotting_multiple_scenarios.plot_tot_y_over_time(
        scenario_data,
        fig_name=os.path.join(path_result_folder, "tot_y_multiple.pdf"),
        plotshow=False)

    # -------------------------------
    # Plot for all regions demand for every year in line plot
    # -------------------------------
    plotting_multiple_scenarios.plot_reg_y_over_time(
        scenario_data,
        fig_name=os.path.join(path_result_folder, "reg_y_multiple.pdf"),
        plotshow=False)

    # -------------------------------
    # Plot comparison of total demand for a year for all LADs (scatter plot)
    # -------------------------------
    plotting_multiple_scenarios.plot_LAD_comparison_scenarios(
        scenario_data,
        year_to_plot=year_to_plot,
        fig_name=os.path.join(path_result_folder, "LAD_multiple.pdf"),
        plotshow=False)

    # -------------------------------
    # Plot different profiles in radar plot (spider plot)
    # -------------------------------
    plotting_multiple_scenarios.plot_radar_plots_average_peak_day(
        scenario_data,
        fueltype_to_model='electricity',
        fueltypes=lookups['fueltypes'],
        year_to_plot=year_to_plot,
        fig_name=os.path.join(path_result_folder))

    plotting_multiple_scenarios.plot_radar_plots_average_peak_day(
        scenario_data,
        fueltype_to_model='gas',
        fueltypes=lookups['fueltypes'],
        year_to_plot=year_to_plot,
        fig_name=os.path.join(path_result_folder))

    # ----------------------
    # Plot peak hour of all fueltypes for different scenario
    # ----------------------
    plotting_multiple_scenarios.plot_tot_y_peak_hour(
        scenario_data,
        fig_name=os.path.join(path_result_folder, "tot_y_peak_h_electricity.pdf"),
        fueltype_str_input='electricity',
        plotshow=False)

    plotting_multiple_scenarios.plot_tot_y_peak_hour(
        scenario_data,
        fig_name=os.path.join(path_result_folder, "tot_y_peak_h_gas.pdf"),
        fueltype_str_input='gas',
        plotshow=False)
    print("Finished processing multiple scenario")
    return
コード例 #27
0
ファイル: figs_p2.py プロジェクト: shitabishmam/energy_demand
def main(path_data_ed, path_shapefile_input, path_out_plots, plot_crit_dict):
    """Figure II plots
    """

    # ---------------------------------------------------------
    # Iterate folders and read out all weather years and stations
    # ---------------------------------------------------------
    all_result_folders = os.listdir(path_data_ed)
    paths_folders_result = []
    weather_yrs = []
    weather_station_per_y = {}
    all_calculated_yrs_paths = []
    for result_folder in all_result_folders:
        try:
            split_path_name = result_folder.split("__")
            weather_yr = int(split_path_name[0])
            weather_yrs.append(weather_yr)
            try:
                weather_station = int(split_path_name[1])
            except:
                weather_station = "all_stations"
            try:
                weather_station_per_y[weather_yr].append(weather_station)
            except:
                weather_station_per_y[weather_yr] = [weather_station]

            # Collect all paths to simulation result folders
            paths_folders_result.append(
                os.path.join(path_data_ed, result_folder))

            tupyle_yr_path = (weather_yr,
                              os.path.join(path_data_ed, result_folder))
            all_calculated_yrs_paths.append(tupyle_yr_path)

        except ValueError:
            pass

    # -----------
    # Used across different plots
    # -----------
    data = {}
    data['lookups'] = lookup_tables.basic_lookups()

    data['enduses'], data['assumptions'], data[
        'regions'] = data_loader.load_ini_param(os.path.join(path_data_ed))

    data['assumptions']['seasons'] = date_prop.get_season(year_to_model=2015)
    data['assumptions']['model_yeardays_daytype'], data['assumptions'][
        'yeardays_month'], data['assumptions'][
            'yeardays_month_days'] = date_prop.get_yeardays_daytype(
                year_to_model=2015)

    population_data = read_data.read_scenaric_population_data(
        os.path.join(path_data_ed, 'model_run_pop'))

    ####################################################################
    # Plotting weather variability results for all weather stations (Fig 2b)
    ####################################################################
    weather_yr_container = defaultdict(dict)

    for weather_yr, result_folder in all_calculated_yrs_paths:
        results_container = read_data.read_in_results(
            os.path.join(result_folder, 'model_run_results_txt'),
            data['assumptions']['seasons'],
            data['assumptions']['model_yeardays_daytype'])

        weather_yr_container['tot_fueltype_yh'][
            weather_yr] = results_container[
                'tot_fueltype_yh']  #tot_fueltype_yh
        weather_yr_container['results_enduse_every_year'][
            weather_yr] = results_container['ed_fueltype_regs_yh']

    # ####################################################################
    # Create plot with regional and non-regional plots for second paper
    # Compare hdd calculations and disaggregation of regional and local
    # ####################################################################
    if plot_crit_dict['plot_scenarios_sorted']:

        fig_p2_annual_hours_sorted.run(
            data_input=weather_yr_container['results_enduse_every_year'],
            regions=data['regions'],
            simulation_yrs_to_plot=[2015],  # Simulation year to plot
            fueltype_str='electricity',
            path_shapefile=path_shapefile_input,
            fig_name=os.path.join(path_out_plots,
                                  "fig_paper_IIb_weather_var_map.pdf"))
コード例 #28
0
def post_install_setup(args):
    """Run this function after installing the energy_demand
    model with smif and putting the data folder with all necessary
    data into a local drive. This scripts only needs to be
    executed once after the energy_demand model has been installed

    Arguments
    ----------
    args : object
        Arguments defined in ``./cli/__init__.py``
    """
    print("... start running initialisation scripts")

    # Paths
    path_main = resource_filename(Requirement.parse("energy_demand"), "config_data")
    path_results = resource_filename(Requirement.parse("energy_demand"), "results")
    local_data_path = args.local_data

    # Initialise logger
    logger_setup.set_up_logger(
        os.path.join(local_data_path, "logging_post_install_setup.log"))
    logging.info("... start local energy demand calculations")

    # Load data
    base_yr = 2015

    data = {}
    data['paths'] = data_loader.load_paths(path_main)
    data['local_paths'] = data_loader.load_local_paths(local_data_path)
    data['result_paths'] = data_loader.load_result_paths(path_results)
    data['lookups'] = lookup_tables.basic_lookups()
    data['enduses'], data['sectors'], data['fuels'] = data_loader.load_fuels(
        data['paths'], data['lookups'])

    # Assumptions
    data['assumptions'] = non_param_assumptions.Assumptions(
        base_yr=base_yr,
        paths=data['paths'],
        enduses=data['enduses'],
        sectors=data['sectors'],
        fueltypes=data['lookups']['fueltypes'],
        fueltypes_nr=data['lookups']['fueltypes_nr'])

    # Delete all previous data from previous model runs
    basic_functions.del_previous_setup(data['local_paths']['data_processed'])
    basic_functions.del_previous_setup(data['result_paths']['data_results'])

    # Create folders and subfolder for data_processed
    basic_functions.create_folder(data['local_paths']['data_processed'])
    basic_functions.create_folder(data['local_paths']['path_post_installation_data'])
    basic_functions.create_folder(data['local_paths']['dir_raw_weather_data'])
    basic_functions.create_folder(data['local_paths']['dir_changed_weather_station_data'])
    basic_functions.create_folder(data['local_paths']['load_profiles'])
    basic_functions.create_folder(data['local_paths']['rs_load_profile_txt'])
    basic_functions.create_folder(data['local_paths']['ss_load_profile_txt'])
    basic_functions.create_folder(data['local_paths']['dir_disaggregated'])

    print("... Read in temperature data from raw files")
    s_raw_weather_data.run(
        data['local_paths'])

    print("... Read in service submodel load profiles")
    s_ss_raw_shapes.run(
        data['paths'],
        data['local_paths'],
        data['lookups'])

    print("... Read in residential submodel load profiles")
    s_rs_raw_shapes.run(
        data['paths'],
        data['local_paths'],
        base_yr)

    print("... successfully finished setup")
    return
コード例 #29
0
ファイル: read_data.py プロジェクト: nismod/energy_demand
def read_fuel_ss(path_to_csv, fueltypes_nr):
    """This function reads in base_data_CSV all fuel types

    Arguments
    ----------
    path_to_csv : str
        Path to csv file
    fueltypes_nr : str
        Nr of fueltypes

    Returns
    -------
    fuels : dict
        Fuels per enduse
    sectors : list
        Service sectors
    enduses : list
        Service enduses
    
    Info of categories
    ------------------
    https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/565748/BEES_overarching_report_FINAL.pdf
    """
    lookups = lookup_tables.basic_lookups()
    fueltypes_lu = lookups['fueltypes']

    rows_list = []
    fuels = {}
    try:
        with open(path_to_csv, 'r') as csvfile:
            rows = csv.reader(csvfile, delimiter=',')
            headings = next(rows) # Skip row
            _secondline = next(rows) # Skip row

            # All sectors
            sectors = set([])
            for sector in _secondline[1:]: #skip fuel ID:
                sectors.add(sector)

            # All enduses
            enduses = set([])
            for enduse in headings[1:]: #skip fuel ID:
                enduses.add(enduse)

            # Initialise dict
            for enduse in enduses:
                fuels[enduse] = {}
                for sector in sectors:
                    fuels[enduse][sector] = np.zeros((fueltypes_nr), dtype="float")

            for row in rows:
                rows_list.append(row)

            for row in rows_list:
                fueltype_str = row[0]
                fueltype_int = fueltypes_lu[fueltype_str]
                for cnt, entry in enumerate(row[1:], 1):
                    enduse = headings[cnt]
                    sector = _secondline[cnt]
                    fuels[enduse][sector][fueltype_int] += float(entry)
    except ValueError:
        raise Exception(
            "The service sector fuel could not be loaded. Check if empty cells.")

    return fuels, sorted(sectors), sorted(enduses)
コード例 #30
0
def main(path_data_energy_demand, path_shapefile_input):
    """Read in all results and plot PDFs

    Arguments
    ----------
    path_data_energy_demand : str
        Path to results
    path_shapefile_input : str
        Path to shapefile
    """
    print("Start processing")
    # ---------
    # Criterias
    # ---------
    write_shapefiles = False  # Write shapefiles
    spatial_results = True  # Spatial geopanda maps

    # Set up logger
    logger_setup.set_up_logger(
        os.path.join(path_data_energy_demand, "plotting.log"))

    # ------------------
    # Load necessary inputs for read in
    # ------------------
    data = {}
    data['local_paths'] = data_loader.load_local_paths(path_data_energy_demand)
    data['result_paths'] = data_loader.load_result_paths(
        os.path.join(path_data_energy_demand, '_result_data'))

    data['lookups'] = lookup_tables.basic_lookups()

    # ---------------
    # Folder cleaning
    # ---------------
    basic_functions.del_previous_setup(
        data['result_paths']['data_results_PDF'])
    basic_functions.del_previous_setup(
        data['result_paths']['data_results_shapefiles'])
    basic_functions.create_folder(data['result_paths']['data_results_PDF'])
    basic_functions.create_folder(
        data['result_paths']['data_results_shapefiles'])

    # Simulation information is read in from .ini file for results
    data['enduses'], data['assumptions'], data['reg_nrs'], data[
        'regions'] = data_loader.load_ini_param(
            os.path.join(path_data_energy_demand, '_result_data'))

    # Other information is read in
    data['assumptions']['seasons'] = date_prop.get_season(year_to_model=2015)
    data['assumptions']['model_yeardays_daytype'], data['assumptions'][
        'yeardays_month'], data['assumptions'][
            'yeardays_month_days'] = date_prop.get_model_yeardays_daytype(
                year_to_model=2015)

    # Read scenario data
    data['scenario_data'] = {}

    data['scenario_data'][
        'population'] = read_data.read_scenaric_population_data(
            data['result_paths']['model_run_pop'])

    # --------------------------------------------
    # Reading in results from different model runs
    # Read in and plot in same step if memory is a problem
    # --------------------------------------------
    results_container = read_data.read_in_results(
        data['result_paths']['data_results_model_runs'],
        data['assumptions']['seasons'],
        data['assumptions']['model_yeardays_daytype'])

    # ----------------
    # Write results to CSV files and merge with shapefile
    # ----------------
    if write_shapefiles:
        write_data.create_shp_results(data, results_container,
                                      data['local_paths'], data['lookups'],
                                      data['regions'])

    # ------------------------------
    # Plotting other results
    # ------------------------------
    plotting_results.run_all_plot_functions(results_container, data['reg_nrs'],
                                            data['regions'], data['lookups'],
                                            data['result_paths'],
                                            data['assumptions'],
                                            data['enduses'])

    # ------------------------------
    # Plotting spatial results
    # ------------------------------
    print("... plotting spatial results")
    if spatial_results:
        logging.info("Create spatial geopanda files")
        result_mapping.create_geopanda_files(
            data, results_container,
            data['result_paths']['data_results_shapefiles'], data['regions'],
            data['lookups']['fueltypes_nr'], data['lookups']['fueltypes'],
            path_shapefile_input)

    print("===================================")
    print("... finished reading and plotting results")
    print("===================================")