コード例 #1
0
if __name__ == '__main__':
    parser = argparse.ArgumentParser(
        description='Entity extractor by binary tagging')
    parser.add_argument('--config_file',
                        default='system.config',
                        help='Configuration File')
    args = parser.parse_args()
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    configs = Configure(config_file=args.config_file)
    fold_check(configs)
    logger = get_logger(configs.log_dir)
    configs.show_data_summary(logger)
    mode = configs.mode.lower()
    if mode == 'train':
        logger.info('mode: train')
        train(configs, device, logger)
    elif mode == 'interactive_predict':
        logger.info('mode: predict_one')
        tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
        bert_model = BertModel.from_pretrained('bert-base-chinese').to(device)
        num_labels = len(configs.class_name)
        model = Model(hidden_size=768, num_labels=num_labels).to(device)
        model.load_state_dict(
            torch.load(os.path.join(configs.checkpoints_dir,
                                    'best_model.pkl')))
        while True:
            logger.info('please input a sentence (enter [exit] to exit.)')
            sentence = input()
            if sentence == 'exit':
                break
            result = predict_one(configs, tokenizer, sentence, bert_model,
コード例 #2
0
from engines.utils.logger import get_logger
from engines.train import train
from engines.predict import Predictor
from engines.utils.word2vec import Word2VecUtils
from config import mode, classifier_config, word2vec_config
import json

if __name__ == '__main__':
    logger = get_logger('./logs')
    # 训练分类器
    if mode == 'train_classifier':
        logger.info(json.dumps(classifier_config, indent=2))
        data_manage = DataManager(logger)
        logger.info('mode: train_classifier')
        logger.info('model: {}'.format(classifier_config['classifier']))
        train(data_manage, logger)
    # 测试分类
    elif mode == 'interactive_predict':
        logger.info(json.dumps(classifier_config, indent=2))
        data_manage = DataManager(logger)
        logger.info('mode: predict_one')
        logger.info('model: {}'.format(classifier_config['classifier']))
        predictor = Predictor(data_manage, logger)
        predictor.predict_one('warm start')
        while True:
            logger.info('please input a sentence (enter [exit] to exit.)')
            sentence = input()
            if sentence == 'exit':
                break
            results = predictor.predict_one(sentence)
            print(results)
コード例 #3
0
ファイル: main.py プロジェクト: StanleyLsx/bert_nlu_joint
        print('vocabs fold not found, creating...')
        if hasattr(configures, vocabs_dir):
            os.mkdir(configures.vocabs_dir)
        else:
            os.mkdir(configures.datasets_fold + '/vocabs')

    log_dir = 'log_dir'
    if not os.path.exists(configures.log_dir):
        print('log fold not found, creating...')
        if hasattr(configures, log_dir):
            os.mkdir(configures.log_dir)
        else:
            os.mkdir(configures.datasets_fold + '/vocabs')


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Bert_nlu_joint')
    parser.add_argument('--config_file',
                        default='system.config',
                        help='Configuration File')
    args = parser.parse_args()
    configs = Configure(config_file=args.config_file)

    fold_check(configs)
    logger = get_logger(configs.log_dir)
    configs.show_data_summary(logger)
    set_env(configs)
    mode = configs.mode.lower()
    dataManager = DataManager(configs, logger)
    train(configs, dataManager, logger)
コード例 #4
0
    if not os.path.exists(configures.datasets_fold):
        print('datasets fold not found')
        exit(1)

    checkpoints_dir = 'checkpoints_dir'
    if not os.path.exists(configures.checkpoints_dir) or not hasattr(
            configures, checkpoints_dir):
        print('checkpoints fold not found, creating...')
        paths = configures.checkpoints_dir.split('/')
        if len(paths) == 2 and os.path.exists(
                paths[0]) and not os.path.exists(configures.checkpoints_dir):
            os.mkdir(configures.checkpoints_dir)
        else:
            os.mkdir('checkpoints')

    log_dir = 'log_dir'
    if not os.path.exists(configures.log_dir):
        print('log fold not found, creating...')
        if hasattr(configures, log_dir):
            os.mkdir(configures.log_dir)
        else:
            os.mkdir(configures.datasets_fold + '/vocabs')


if __name__ == '__main__':
    logger = get_logger('logs')
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    mode = 'train'
    if mode == 'train':
        train(device, logger)