コード例 #1
0
def merge(tagdatas):
    """Merge two or more tagdbs into a total one, which will have the
	union of the ids."""
    # First get rid of empty inputs
    tagdatas = [data for data in tagdatas if len(data["id"]) > 0]
    # Generate the union of ids, and the index of each
    # tagset into it.
    tot_ids = utils.union([data["id"] for data in tagdatas])
    inds = [utils.find(tot_ids, data["id"]) for data in tagdatas]
    nid = len(tot_ids)
    data_tot = {}
    for di, data in enumerate(tagdatas):
        for key, val in data.iteritems():
            if key not in data_tot:
                # Hard to find an appropriate default value for
                # all types. We use false for bool to let tags
                # accumulate, -1 as probably the most common
                # placeholder value for ints, and NaN for strings
                # and floats.
                oval = np.zeros(val.shape[:-1] + (nid, ), val.dtype)
                if oval.dtype == bool:
                    oval[:] = False
                elif np.issubdtype(oval.dtype, np.integer):
                    oval[:] = -1
                else:
                    oval[:] = np.NaN
                if oval.dtype == bool: oval[:] = False
                data_tot[key] = oval
            # Boolean flags combine OR-wise, to let us mention the same
            # id in multiple files
            if val.dtype == bool: data_tot[key][..., inds[di]] |= val
            else: data_tot[key][..., inds[di]] = val
    return data_tot
コード例 #2
0
ファイル: smartsplit.py プロジェクト: amaurea/tenki
def match_existing(aset, ctimes):
	# Given an aset as returned by read_existing, convert TOD ids to ctimes and match them against
	# our existing ctime list. Returns an [nctime] array containing the id of the input split
	# it belongs to. If any id is present in aset but not in ctimes, an IndexError is raised.
	# Unrestricted ctimes will be set to -1.
	ind_ownership = np.full(len(ctimes),-1,int)
	for array in aset:
		for split, ids in enumerate(aset[array]):
			my_ctimes = ids2ctimes(ids)
			my_inds   = utils.find(ctimes, my_ctimes)
			ind_ownership[my_inds] = split
	return ind_ownership
コード例 #3
0
ファイル: tagdb.py プロジェクト: jit9/enlib
	def select(self, ids):
		"""Return a tagdb which only contains the selected ids."""
		# Extract the subids
		ids, subids = split_ids(ids)
		# Restrict to the subset of these ids
		inds = utils.find(self.ids, ids)
		odata = {key:val[...,inds] for key, val in self.data.iteritems()}
		# Update subids
		odata["subids"] = np.array([merge_subid(a,b) for a, b in zip(odata["subids"], subids)])
		res = self.copy()
		res.data = odata
		return res
コード例 #4
0
ファイル: smartsplit.py プロジェクト: amaurea/tenki
def match_existing(aset, ctimes):
	# Given an aset as returned by read_existing, convert TOD ids to ctimes and match them against
	# our existing ctime list. Returns an [nctime] array containing the id of the input split
	# it belongs to. If any id is present in aset but not in ctimes, an IndexError is raised.
	# Unrestricted ctimes will be set to -1.
	ind_ownership = np.full(len(ctimes),-1,int)
	for array in aset:
		for split, ids in enumerate(aset[array]):
			my_ctimes = ids2ctimes(ids)
			my_inds   = utils.find(ctimes, my_ctimes)
			ind_ownership[my_inds] = split
	return ind_ownership
コード例 #5
0
def get_tod_groups(ids, samelen=True):
	times = np.array([float(id[:id.index(".")]) for id in ids])
	labels = utils.label_unique(times, rtol=0, atol=10)
	nlabel = np.max(labels)+1
	groups = [ids[labels==label] for label in range(nlabel)]
	# Try to preserve original ordering
	first  = [group[0] for group in groups]
	orig_inds = utils.find(ids, first)
	order  = np.argsort(orig_inds)
	groups = [groups[i] for i in order]
	if samelen:
		nsub = np.max(np.bincount(labels))
		groups = [g for g in groups if len(g) == nsub]
	return groups
コード例 #6
0
ファイル: tagdb.py プロジェクト: cristobal-sifon/enlib
 def select(self, ids):
     """Return a tagdb which only contains the selected ids."""
     if isinstance(ids, basestring):
         ids = self.query(ids)
     # Extract the subids
     ids, subids = split_ids(ids)
     # Restrict to the subset of these ids
     inds = utils.find(self.ids, ids)
     odata = dslice(self.data, inds)
     # Update subids
     odata["subids"] = np.array(
         [merge_subid(a, b) for a, b in zip(odata["subids"], subids)])
     res = self.copy()
     res.data = odata
     return res
コード例 #7
0
 def select(self, ids):
     """Return a tagdb which only contains the selected ids."""
     if isinstance(ids, basestring):
         ids = self.query(ids)
     ids = np.asarray(ids)
     if issubclass(ids.dtype.type, np.integer):
         # Fast integer slicing
         return self.__class__(dslice(self.data, ids))
     else:
         # Slice by id
         # Extract the subids
         ids, subids = split_ids(ids)
         # Restrict to the subset of these ids
         inds = utils.find(self.ids, ids)
         odata = dslice(self.data, inds)
         # Update subids
         odata["subids"] = np.array(
             [merge_subid(a, b) for a, b in zip(odata["subids"], subids)])
         res = self.copy()
         res.data = odata
         return res
コード例 #8
0
ファイル: tod2map2.py プロジェクト: amaurea/tenki
			# Read the info file to see which scanning patterns were used in the phase dir
			phasemap = mapmaking.PhaseMap.read(fname)
			npat     = len(phasemap.patterns)
			# Find which phase map part each scan corresponds to. We get all the scan
			# boxes, and then add our existing scanning pattern boxes as references.
			# We can then just see which scans get grouped with which patterns.
			my_boxes = scanutils.get_scan_bounds(myscans)
			boxes = utils.allgatherv(my_boxes, comm)
			rank  = utils.allgatherv(np.full(len(my_boxes),comm.rank),      comm)
			boxes = np.concatenate([phasemap.patterns, boxes], 0)
			labels= utils.label_unique(boxes, axes=(1,2), atol=tol)
			if comm.rank == 0:
				print "labels"
				for b,l in zip(boxes, labels):
					print "%8.3f %8.3f %8.3f %5d" % (b[0,0]/utils.degree,b[0,1]/utils.degree,b[1,1]/utils.degree,l)
			pids  = utils.find(labels[:npat], labels[npat:])
			mypids= pids[rank==comm.rank]
			if param["name"] == "addphase":
				filter = mapmaking.FilterAddPhase(myscans, phasemap, mypids, mmul=mul, tmul=tmul)
			else:
				filter = mapmaking.FilterDeprojectPhase(myscans, phasemap, mypids, int(param["perdet"])>0, mmul=mul, tmul=tmul)
		elif param["name"] == "scale":
			value = float(param["value"])
			if value == 1: continue
			filter = mapmaking.FilterScale(value)
		elif param["name"] == "null":
			filter = mapmaking.FilterNull()
		elif param["name"] == "buddy":
			if "map" not in param: raise ValueError("-F buddy needs a map file to subtract. e.g. -F buddy:map=foo.fits")
			mode  = int(param["value"])
			sys   = param["sys"]
コード例 #9
0
ファイル: flagrange.py プロジェクト: cristobal-sifon/enlib
def merge(franges):
    """Given a list of flagranges franges covering the same time period, merge them
	into a single flagrange containing the union of their cut causes"""
    # We don't support changing sample ranges or detectors present currently. They could
    # be added if necessary.
    for i, fr in enumerate(franges):
        assert fr.nsamp == franges[
            0].nsamp, "Inconsistent nsamp in Flagrange #%d: %d != %d" % (
                i, fr.nsamp, franges[0].nsamp)
        assert fr.sample_offset == franges[
            0].sample_offset, "Inconsistent sample_offset in Flagrange #%d: %d != %d" % (
                i, fr.sample_offset, franges[0].sample_offset)
        assert np.array_equal(
            fr.dets,
            franges[0].dets), "Inconsistent detectors in Flagrange #d" % i
    F = franges[0]
    # Find the flat names across all inputs
    name_list = [fr.flag_names for fr in franges]
    name_union = utils.union(name_list)
    # And find the index of each local name into the name union
    name_rel = [np.searchsorted(name_union, names) for names in name_list]
    # Translate these indices into an index and bit into the output flag array
    nbyte_out = (len(name_union) + 7) // 8
    flag_ind_map = [nrel // 8 for nrel in name_rel]
    flag_bit_map = [1 << (nrel % 8) for nrel in name_rel]
    # How should we handle the derived flags? These should just be the union of their local
    # definitions. To do this we must translate each of their definitions into names
    derived_flags_dict = {}
    for fr in franges:
        for dname, fmask in zip(fr.derived_names, fr.derived_masks):
            if dname not in derived_flags_dict:
                derived_flags_dict[dname] = [set(), set()]
            for fi in range(fr.nflag):
                byte = fi // 8
                bit = 1 << (fi % 8)
                for op in range(2):
                    if fmask[op][byte] & bit:
                        derived_flags_dict[dname][op].add(fr.flag_names[fi])
    # Turn this set of names back into indices and bits
    derived_names = sorted(derived_flags_dict.keys())
    derived_masks = np.zeros([len(derived_names), 2, nbyte_out], np.uint8)
    for fi, dname in enumerate(derived_names):
        for op in range(2):
            for fname in derived_flags_dict[dname][op]:
                find = utils.find(name_union, fname)
                derived_masks[fi][op][find // 8] |= 1 << (find % 8)
    # We can avoid a slow loop over detectors by expanding indices to a global indexing
    stack_inds_list = []
    for fr in franges:
        nper = fr.stack_bounds[1:] - fr.stack_bounds[:-1]
        stack_inds_list.append(fr.index_stack +
                               np.repeat(np.arange(fr.ndet) * fr.nsamp, nper))
    # We will have an index anywhere any one of the input ranges has an index
    stack_inds_union = utils.union(stack_inds_list)
    # and we need to know how each input range maps to it
    stack_inds_rel = [
        np.searchsorted(stack_inds_union, sinds) for sinds in stack_inds_list
    ]
    # Populate the output flag stack
    flag_stack = np.zeros([len(stack_inds_union), nbyte_out], np.uint8)
    for i, fr in enumerate(franges):
        for fi in range(fr.nflag):
            fo = name_rel[i][fi]
            ibyte, ibit = fi // 8, 1 << (fi % 8)
            obyte, obit = fo // 8, 1 << (fo % 8)
            # We we will use np.repeat to handle the flags staying on until they
            # are changed again.
            vals = np.full(len(fr.flag_stack), obit, np.uint8)
            vals[fr.flag_stack[:, ibyte] & ibit == 0] = 0
            flag_stack[:, ibyte] |= fill_right(stack_inds_rel[i], vals,
                                               len(flag_stack))
    # Undo expansion and recover stack bounds
    index_stack = stack_inds_union % F.nsamp
    stack_dets = stack_inds_union // F.nsamp
    stack_bounds = np.concatenate([[0],
                                   np.searchsorted(stack_dets,
                                                   np.arange(F.ndet),
                                                   side="right")])
    # Phew! Finally done. Return the resulting Flagrange
    res = Flagrange(F.nsamp,
                    index_stack,
                    flag_stack,
                    stack_bounds,
                    dets=F.dets,
                    flag_names=name_union,
                    derived_masks=derived_masks,
                    derived_names=derived_names,
                    sample_offset=F.sample_offset)
    return res
コード例 #10
0
			# Read the info file to see which scanning patterns were used in the phase dir
			phasemap = mapmaking.PhaseMap.read(fname, rewind=True)
			npat     = len(phasemap.patterns)
			# Find which phase map part each scan corresponds to. We get all the scan
			# boxes, and then add our existing scanning pattern boxes as references.
			# We can then just see which scans get grouped with which patterns.
			my_boxes = scanutils.get_scan_bounds(myscans)
			boxes = utils.allgatherv(my_boxes, comm)
			rank  = utils.allgatherv(np.full(len(my_boxes),comm.rank),      comm)
			boxes = np.concatenate([phasemap.patterns, boxes], 0)
			labels= utils.label_unique(boxes, axes=(1,2), atol=tol)
			if comm.rank == 0:
				print("labels")
				for b,l in zip(boxes, labels):
					print("%8.3f %8.3f %8.3f %5d" % (b[0,0]/utils.degree,b[0,1]/utils.degree,b[1,1]/utils.degree,l))
			pids  = utils.find(labels[:npat], labels[npat:], default=-1)
			mypids= pids[rank==comm.rank]
			if np.any(mypids < 0):
				bad = np.where(mypids<0)[0]
				for bi in bad:
					print("Warning: No matching scanning pattern found for %s. Using pattern 0" % (myscans[bi].id))
					mypids[bi] = 0
			if param["name"] == "addphase":
				filter = mapmaking.FilterAddPhase(myscans, phasemap, mypids, mmul=mul, tmul=tmul)
			else:
				filter = mapmaking.FilterDeprojectPhase(myscans, phasemap, mypids, int(param["perdet"])>0, mmul=mul, tmul=tmul)
		elif param["name"] == "scale":
			value = float(param["value"])
			if value == 1: continue
			filter = mapmaking.FilterScale(value)
		elif param["name"] == "null":