def predictMan(res): try: X, _ = load_svmlight_file(res.data_file, n_features=res.nfeat) except Exception: X, _ = load_svmlight_file(res.data_file) X = X.toarray() if res.meth[0] == 'Classification': ens = EnsembleSelectionClassifier(db_file=res.db_file, models=None) elif res.meth[0] == 'Regression': ens = EnsembleSelectionRegressor(db_file=res.db_file, models=None) else: msg = "Invalid method passed (-T does not conform to ['Regression','Classification']" raise ValueError(msg) if (res.pred_src == 'best'): preds = ens.best_model_predict_proba(X) else: preds = ens.predict_proba(X) if res.meth[0] == 'Classification': if (not res.return_probs): preds = np.argmax(preds, axis=1) for p in preds: if (res.return_probs): mesg = " ".join(["%.5f" % v for v in p]) else: mesg = p print(str(mesg)) return preds
action='store_true', default=False, help='predict probabilities') return parser.parse_args() if (__name__ == '__main__'): res = parse_args() X, _ = load_svmlight_file(res.data_file) X = X.toarray() ens = EnsembleSelectionClassifier(db_file=res.db_file, models=None) if (res.pred_src == 'best'): preds = ens.best_model_predict_proba(X) else: preds = ens.predict_proba(X) if (not res.return_probs): preds = np.argmax(preds, axis=1) for p in preds: if (res.return_probs): mesg = " ".join(["%.8f" % v for v in p]) else: mesg = p print(mesg)
parser.add_argument('-p', dest='return_probs', action='store_true', default=False, help='predict probabilities') return parser.parse_args() if (__name__ == '__main__'): res = parse_args() X, _ = load_svmlight_file(res.data_file) X = X.toarray() ens = EnsembleSelectionClassifier(db_file=res.db_file, models=None) if (res.pred_src == 'best'): preds = ens.best_model_predict_proba(X) else: preds = ens.predict_proba(X) if (not res.return_probs): preds = np.argmax(preds, axis=1) for p in preds: if (res.return_probs): mesg = " ".join(["%.5f" % v for v in p]) else: mesg = p print(mesg)