コード例 #1
0
ファイル: model_voc.py プロジェクト: oyucube/voc
 def make_img(self, x, l, s, num_lm, random=0):
     if random == 0:
         lm = Variable(xp.clip(l.data, 0, 1))
         sm = Variable(xp.clip(s.data, 0, 1))
     else:
         eps = xp.random.normal(0, 1, size=l.data.shape).astype(xp.float32)
         epss = xp.random.normal(0, 1, size=s.data.shape).astype(xp.float32)
         sm = xp.clip((s.data + xp.sqrt(self.var) * epss), 0,
                      1).astype(xp.float32)
         lm = xp.clip(
             l.data + xp.power(10, sm - 1) * eps * xp.sqrt(self.vars), 0, 1)
         sm = Variable(sm)
         lm = Variable(lm.astype(xp.float32))
     if self.use_gpu:
         xm = make_sampled_image.generate_xm_rgb_gpu(lm.data,
                                                     sm.data,
                                                     x,
                                                     num_lm,
                                                     g_size=self.gsize)
     else:
         xm = make_sampled_image.generate_xm_rgb(lm.data,
                                                 sm.data,
                                                 x,
                                                 num_lm,
                                                 g_size=self.gsize)
     return xm, lm, sm
コード例 #2
0
 def use_model(self, x, t):
     self.reset()
     num_lm = x.shape[0]
     n_step = self.n_step
     s_list = xp.empty((n_step, num_lm, 1))
     l_list = xp.empty((n_step, num_lm, 2))
     x_list = xp.empty((n_step, num_lm, 3, self.gsize, self.gsize))
     l, s, b1 = self.first_forward(x, num_lm)
     for i in range(n_step):
         if i + 1 == n_step:
             xm, lm, sm = self.make_img(x, l, s, num_lm, random=0)
             l1, s1, y, b = self.recurrent_forward(xm, lm, sm)
             s_list[i] = sm.data
             l_list[i] = lm.data
             x_list[i] = xm.data
             accuracy = y.data * t
             s_list = xp.power(10, s_list - 1)
             return xp.sum(accuracy, axis=1), l_list, s_list, x_list
         else:
             xm, lm, sm = self.make_img(x, l, s, num_lm, random=0)
             l1, s1, y, b = self.recurrent_forward(xm, lm, sm)
         l = l1
         s = s1
         s_list[i] = sm.data
         l_list[i] = lm.data
         x_list[i] = xm.data
     return
コード例 #3
0
def reconstruct_audio(compressed, reference):

    power = xp.sqrt(xp.power(compressed, 1 / 0.3))[:, 0, :, :]
    power = chainer.cuda.to_cpu(power).T

    reference = chainer.cuda.to_cpu(reference).T
    reference = reference[:, :, 0, :] + reference[:, :, 1, :] * 1j
    phase = np.exp(1.0j * np.angle(reference))

    stft = power * phase

    return stft
コード例 #4
0
    def cul_loss(self, y, target, l, s, lm, sm):

        zm = xp.power(10, sm.data - 1)

        l1, l2 = F.split_axis(l, indices_or_sections=2, axis=1)
        m1, m2 = F.split_axis(lm, indices_or_sections=2, axis=1)
        ln_p = ((l1 - m1) * (l1 - m1) + (l2 - m2) * (l2 - m2)) / self.var / zm / zm / 2
        # size
        size_p = (sm - s) * (sm - s) / self.vars + ln_p

        accuracy = y * target

        loss = -F.sum(accuracy)
        return loss, size_p
コード例 #5
0
def generate_xm_in_gpu(lm, sm, img, num_lm, g_size, img_size=112):
    xm = xp.empty((num_lm, g_size * g_size)).astype(xp.float32)
    img_buf = img.reshape((num_lm, img_size * img_size))
    zm = xp.power(10, sm - 1)
    for k in range(num_lm):
        xr = xp.linspace((lm[k][0] - zm[k] / 2), (lm[k][0] + zm[k] / 2),
                         g_size)
        xr *= img_size
        xr = xp.clip(xr, 0, img_size - 1).astype(np.int32)
        yr = xp.linspace((lm[k][1] - zm[k] / 2), (lm[k][1] + zm[k] / 2),
                         g_size)
        yr *= img_size
        yr = xp.clip(yr, 0, img_size - 1).astype(np.int32)
        xr = img_size * np.repeat(xr, g_size) + xp.tile(yr, g_size)
        xm[k] = img_buf[k][xr]
    return xm.reshape(num_lm, 1, g_size, g_size).astype(xp.float32)
コード例 #6
0
    def cul_loss(self, y, target, l, s, lm, sm):

        zm = xp.power(10, sm.data - 1)

        l1, l2 = F.split_axis(l, indices_or_sections=2, axis=1)
        m1, m2 = F.split_axis(lm, indices_or_sections=2, axis=1)
        ln_p = ((l1 - m1) * (l1 - m1) + (l2 - m2) *
                (l2 - m2)) / self.var / zm / zm / 2
        # size
        size_p = (sm - s) * (sm - s) / self.vars + ln_p

        accuracy = y * target

        loss = -F.sum(accuracy)

        # r = xp.where(
        #     xp.argmax(y.data, axis=1) == xp.argmax(target.data, axis=1), 1, 0).reshape((num_lm, 1)).astype(xp.float32)
        #
        # loss += F.sum((r - b) * (r - b))
        # bb = xp.sum(b.data) / num_lm
        # lossm = self.r * (r - bb)
        # loss += F.sum(Variable(lossm) * size_p)
        return loss, size_p