fig.canvas.mpl_connect('pick_event', onpick) """ plt.close("IME") UsQ, UsCH = barrios.ix[event.ind][["UsQ", "UsCH"]].values[0] impedence_matching_exp(q, ch, UsQ, UsCH, showplot=True) if __name__ == "__main__": plt.ion() plt.close('all') # Import Polystyrene EOS data, from a HYADES EOS file, and change initial # conditions ch = EOS("../data/eos_32.dat") ch._rho0 = 1.05 ch._P0 = 0 # Import Quartz EOS data and use an analytic method bases on Us vs Up # to calculate the Hugoniot q = EOS("../data/eos_24.dat", hugoniot_method="analytic", upmin=0, upmax=29, UsvUp=quartz_UsvUp(model="knudson")) # Play around with different quarts release models q.hugoniot.custom_release_model = types.MethodType(quartz_ode_mglr, q.hugoniot) q.hugoniot.set_release_model("custom") #q.hugoniot.set_release_model("mg", gamma=.66)
from impediance_match import impedence_matching_exp, monte_carlo_error_prop from util import MonteCarloVariable def onpick(event): plt.close("IME") UsQ, UsGDP = knudson.ix[event.ind][["UsQ", "UsGDP"]].values[0] impedence_matching_exp(q, GDP, UsQ, UsGDP, showplot=True) if __name__ == "__main__": plt.ion() plt.close('all') GDP = EOS("../data/eos_32.dat") GDP._rho0 = 1.035 GDP._P0 = 0 q = EOS("../data/eos_24.dat", hugoniot_method="analytic", upmin=0, upmax=50, UsvUp=quartz_UsvUp(model="knudson") ) # overload the quarts hugoniot with the MGLR model q.hugoniot.custom_release_model = types.MethodType(quartz_ode_mglr, q.hugoniot) q.hugoniot.set_release_model("custom") knudson = pd.read_csv("../data/knudson_test.csv", index_col=False) UsGDP = knudson.UsGDP.values