def test_get_results(): pipeline_names = ['connectivity', 'power', 'inverse', 'ica', 'tfr_morlet'] for name in pipeline_names: res = get_results('', '', name) assert res
############################################################################### # Finally, we are now ready to execute our workflow. main_workflow.config['execution'] = {'remove_unnecessary_outputs': 'false'} # Run workflow locally on 1 CPU main_workflow.run(plugin='MultiProc', plugin_args={'n_procs': 1}) ############################################################################### # The output is the preprocessed data stored in the workflow directory # defined by `base_dir`. # # It’s a good rule to inspect the report file saved in the same dir to look at # the excluded ICA components. It is also possible to include and exclude more # components by using either a jupyter notebook or the preprocessing pipeline # with different flag parameters. ############################################################################### # import mne # noqa from ephypype.gather.gather_results import get_results # noqa ica_files, raw_files = get_results(main_workflow.base_dir, main_workflow.name, pipeline='ica') for ica_file, raw_file in zip(ica_files, raw_files): raw = mne.io.read_raw_fif(raw_file) ica = mne.preprocessing.read_ica(ica_file) ica.plot_properties(raw, picks=ica.exclude, figsize=[4.5, 4.5])
# **mean PSD in .npy format** stored in the workflow directory defined by # `base_dir` # # .. note:: The power pipeline in the **source space** is implemented by the # function :func:`ephypype.pipelines.power.create_pipeline_power_src_space` # and its Node :class:`ephypype.interfaces.mne.power.Power` compute the PSD # by the welch function of the scipy package. ############################################################################## from ephypype.gather.gather_results import get_results # noqa from visbrain.objects import SourceObj, SceneObj, ColorbarObj # noqa from visbrain.utils import normalize # noqa from nipype.utils.filemanip import split_filename # noqa psd_files, channel_coo_files = get_results(main_workflow.base_dir, main_workflow.name, pipeline='power') sc = SceneObj(size=(1800, 500), bgcolor=(.1, .1, .1)) for psd_file, channel_coo_file in zip(psd_files, channel_coo_files): path_xyz, basename, ext = split_filename(psd_file) arch = np.load(psd_file) psds, freqs = arch['psds'], arch['freqs'] xyz = np.genfromtxt(channel_coo_file, dtype=float) freq_bands = np.asarray(freq_bands) clim = (psds.min(), psds.max()) # Find indices of frequencies : idx_fplt = np.abs( (freqs.reshape(1, 1, -1) - freq_bands[..., np.newaxis])).argmin(2)
# <a href="https://github.com/neuropycon/graphpype" target="_blank">graphpype</a> ############################################################################## from ephypype.gather.gather_results import get_results # noqa from ephypype.gather.gather_results import get_channel_files # noqa from ephypype.aux_tools import _parse_string # noqa from visbrain.objects import ConnectObj, SourceObj, SceneObj, ColorbarObj # noqa thresh = .75 with_text = False channel_coo_files, channel_name_files = get_channel_files( main_workflow.base_dir, main_workflow.name) connectivity_matrices, _ = get_results(main_workflow.base_dir, main_workflow.name, pipeline='connectivity') sc = SceneObj(size=(1000, 1000), bgcolor=(.1, .1, .1)) for nf, (connect_file, channel_coo_file, channel_name_file) in \ enumerate(zip(connectivity_matrices, channel_coo_files, channel_name_files)): # Load files : xyz = np.genfromtxt(channel_coo_file, dtype=float) names = np.genfromtxt(channel_name_file, dtype=str) connect = np.load(connect_file) connect += connect.T connect = np.ma.masked_array(connect, mask=connect < thresh) names = names if with_text else None radius = connect.sum(1)
############################################################################### # The output is the source reconstruction matrix stored in the workflow # directory defined by `base_dir`. This matrix can be used as input of # the Connectivity pipeline. # # .. warning:: To use this pipeline, we need a cortical segmentation of MRI # data, that could be provided by Freesurfer ############################################################################## import pickle # noqa from ephypype.gather.gather_results import get_results # noqa from visbrain.objects import BrainObj, ColorbarObj, SceneObj # noqa time_series_files, label_files = get_results(main_workflow.base_dir, main_workflow.name, pipeline='inverse') time_pts = 30 sc = SceneObj(size=(800, 500), bgcolor=(0, 0, 0)) lh_file = op.join(subjects_dir, 'fsaverage', 'label/lh.aparc.annot') rh_file = op.join(subjects_dir, 'fsaverage', 'label/rh.aparc.annot') cmap = 'bwr' txtcolor = 'white' for inverse_file, label_file in zip(time_series_files, label_files): # Load files : with open(label_file, 'rb') as f: ar = pickle.load(f) names, xyz, colors = ar['ROI_names'], ar['ROI_coords'], ar[ 'ROI_colors'] # noqa