def create_single_parkour_env(env_name, seed, use_monitor, split='', mujoco_key_path=None, run_oracle_before_monitor=False): """Creates a parkour environment.""" del env_name # unused del split # unused print('Creating parkour env') env = ant_wrapper.AntWrapper(height=Const.OBSERVATION_HEIGHT, width=Const.OBSERVATION_WIDTH, mujoco_key_path=mujoco_key_path) if run_oracle_before_monitor: env = dmlab_utils.OracleRewardWrapper(env) if use_monitor: env = Monitor( env, logger.get_dir() and os.path.join(logger.get_dir(), str(seed))) return env
def create_single_env(env_name, seed, dmlab_homepath, use_monitor, split='train', vizdoom_maze=False, action_set='', respawn=True, fixed_maze=False, maze_size=None, room_count=None, episode_length_seconds=None, min_goal_distance=None, run_oracle_before_monitor=False): """Creates a single instance of DMLab env, with training mixer seed. Args: env_name: Name of the DMLab environment. seed: seed passed to DMLab. Must be != 0. dmlab_homepath: Path to DMLab MPM. Required when running on borg. use_monitor: Boolean to add a Monitor wrapper. split: One of {"train", "valid", "test"}. vizdoom_maze: Whether a geometry of a maze should correspond to the one used by Pathak in his curiosity paper in Vizdoom environment. action_set: One of {'small', 'nofire', ''}. Which action set to use. respawn: If disabled respawns are not allowed fixed_maze: Boolean to use predefined maze configuration. maze_size: If not None sets particular height/width for mazes to be generated. room_count: If not None sets the number of rooms for mazes to be generated. episode_length_seconds: If not None overrides the episode duration. min_goal_distance: If not None ensures that there's at least this distance between the starting and target location (for explore_goal_locations_large level). run_oracle_before_monitor: Whether to run OracleRewardWrapper before the Monitor. Returns: Gym compatible DMLab env. Raises: ValueError: when the split is invalid. """ main_observation = 'DEBUG.CAMERA.PLAYER_VIEW_NO_RETICLE' level = constants.Const.find_level(env_name) env_settings = dmlab_utils.create_env_settings( level.dmlab_level_name, homepath=dmlab_homepath, width=Const.OBSERVATION_WIDTH, height=Const.OBSERVATION_HEIGHT, seed=seed, main_observation=main_observation) env_settings.update(level.extra_env_settings) if maze_size: env_settings['mazeHeight'] = maze_size env_settings['mazeWidth'] = maze_size if min_goal_distance: env_settings['minGoalDistance'] = min_goal_distance if room_count: env_settings['roomCount'] = room_count if episode_length_seconds: env_settings['episodeLengthSeconds'] = episode_length_seconds if split == 'train': mixer_seed = Const.MIXER_SEEDS[constants.SplitType.POLICY_TRAINING] elif split == 'valid': mixer_seed = Const.MIXER_SEEDS[constants.SplitType.VALIDATION] elif split == 'test': mixer_seed = Const.MIXER_SEEDS[constants.SplitType.TEST] else: raise ValueError('Invalid split: {}'.format(split)) env_settings.update(mixerSeed=mixer_seed) if vizdoom_maze: env_settings['episodeLengthSeconds'] = 60 env_settings['overrideEntityLayer'] = """******************* ***** * *** * ***** * ***** * *** * ****** *** ***** ** * * * *** * *P *** * * * * *** * ****** ********* ** ****** *********G** ***** *********** ***** *********** ***** *********** ****** ************ ****** ************ ****** ********** *******************""" if fixed_maze: env_settings['overrideEntityLayer'] = """ ***************** * *PPG * * *** * *PPP*** * * *GPP* *GGG PGP* * *GPG* * ***PGP* * *PGP* ***PGG* * *********** * * * *GPG*GGP * * *** *PPG*PGG* * *PGP* *GPP PPP* * *PPP* * *** *** * *GGG* *GPP* * *** ***** *GGG* * *GPG PPG PPP* * *PGP*GGP* ***** * *GPP*GPP* * *****************""" # Gym compatible environment. env = dmlab_utils.DMLabWrapper( 'dmlab', env_settings, action_set=get_action_set(action_set), main_observation=main_observation) env = atari_wrappers.StickyActionEnv(env) env = CollectGymDataset(env, os.path.expanduser(FLAGS.ep_path), atari=False) if run_oracle_before_monitor: env = dmlab_utils.OracleRewardWrapper(env) if vizdoom_maze or not respawn: env = dmlab_utils.EndEpisodeOnRespawn(env) if use_monitor: env = Monitor( env, logger.get_dir() and os.path.join(logger.get_dir(), str(seed))) return env