def setup(self): self.mjd_array = np.array( [58827.15925499, 58827.15925499, 58827.15925499, 58827.15925499, 58827.15925499]) self.mjd_scalar = self.mjd_array[0].item() self.utc2mjd = 2400000.5 paranal_long = -1.228798 paranal_lat = -0.42982 paranal_height = 2669. self.astrom_scalar, _ = erfa.apco13( self.utc2mjd, self.mjd_scalar, 0.0, paranal_long, paranal_lat, paranal_height, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5) self.astrom_array, _ = erfa.apco13( self.utc2mjd, self.mjd_array, 0.0, paranal_long, paranal_lat, paranal_height, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5)
def test_iau_fullstack(fullstack_icrs, fullstack_fiducial_altaz, fullstack_times, fullstack_locations, fullstack_obsconditions): """ Test the full transform from ICRS <-> AltAz """ # create the altaz frame altazframe = AltAz(obstime=fullstack_times, location=fullstack_locations, pressure=fullstack_obsconditions[0], temperature=fullstack_obsconditions[1], relative_humidity=fullstack_obsconditions[2], obswl=fullstack_obsconditions[3]) aacoo = fullstack_icrs.transform_to(altazframe) # compare aacoo to the fiducial AltAz - should always be different assert np.all( np.abs(aacoo.alt - fullstack_fiducial_altaz.alt) > 50 * u.milliarcsecond) assert np.all( np.abs(aacoo.az - fullstack_fiducial_altaz.az) > 50 * u.milliarcsecond) # if the refraction correction is included, we *only* do the comparisons # where altitude >5 degrees. The SOFA guides imply that below 5 is where # where accuracy gets more problematic, and testing reveals that alt<~0 # gives garbage round-tripping, and <10 can give ~1 arcsec uncertainty if fullstack_obsconditions[0].value == 0: # but if there is no refraction correction, check everything msk = slice(None) tol = 5 * u.microarcsecond else: msk = aacoo.alt > 5 * u.deg # most of them aren't this bad, but some of those at low alt are offset # this much. For alt > 10, this is always better than 100 masec tol = 750 * u.milliarcsecond # now make sure the full stack round-tripping works icrs2 = aacoo.transform_to(ICRS) adras = np.abs(fullstack_icrs.ra - icrs2.ra)[msk] addecs = np.abs(fullstack_icrs.dec - icrs2.dec)[msk] assert np.all(adras < tol), 'largest RA change is {} mas, > {}'.format( np.max(adras.arcsec * 1000), tol) assert np.all(addecs < tol), 'largest Dec change is {} mas, > {}'.format( np.max(addecs.arcsec * 1000), tol) # check that we're consistent with the ERFA alt/az result iers_tab = iers.earth_orientation_table.get() xp, yp = u.Quantity(iers_tab.pm_xy(fullstack_times)).to_value(u.radian) lon = fullstack_locations.geodetic[0].to_value(u.radian) lat = fullstack_locations.geodetic[1].to_value(u.radian) height = fullstack_locations.geodetic[2].to_value(u.m) jd1, jd2 = get_jd12(fullstack_times, 'utc') pressure = fullstack_obsconditions[0].to_value(u.hPa) temperature = fullstack_obsconditions[1].to_value(u.deg_C) # Relative humidity can be a quantity or a number. relative_humidity = u.Quantity(fullstack_obsconditions[2], u.one).value obswl = fullstack_obsconditions[3].to_value(u.micron) astrom, eo = erfa.apco13(jd1, jd2, fullstack_times.delta_ut1_utc, lon, lat, height, xp, yp, pressure, temperature, relative_humidity, obswl) erfadct = _erfa_check(fullstack_icrs.ra.rad, fullstack_icrs.dec.rad, astrom) npt.assert_allclose(erfadct['alt'], aacoo.alt.radian, atol=1e-7) npt.assert_allclose(erfadct['az'], aacoo.az.radian, atol=1e-7)