コード例 #1
0
def fit_mdl_obj(x, *args):
    # obj function to fit TTA and AHT for each language, region, type combination to match ABN and SLA
    # note the obj is the generalized MAPE for each. This is to compensate over-weighting for low prob entries
    tta, aht = x
    row, t = args
    mdl_abn, abn = eA.abn_prob(row['calls'], 1 / aht, row['servers'],
                               1 / tta), row['pct_abn']
    mdl_sla, sla = eA.sla_prob(row['calls'], 1 / tta, row['servers'], 1 / aht,
                               t), row['sla_120']
    return ((mdl_abn - abn) / (mdl_abn + abn))**2 + ((mdl_sla - sla) /
                                                     (mdl_sla + sla))**2
コード例 #2
0
def threshold(a_df, p_esc, t):
    # gets the optimal routing between TR and NT per language, region pair
    tr_row = a_df[a_df['type'] == 'Trip']
    nt_row = a_df[a_df['type'] == 'NonTrip']

    m_tr = tr_row['servers'].values[0]
    m_nt = nt_row['servers'].values[0]

    calls_tr = tr_row['calls'].values[0]
    calls_nt = nt_row['calls'].values[0]
    calls = calls_tr + calls_nt

    aht_tr = tr_row['mdl_aht'].values[0]
    aht_nt = nt_row['mdl_aht'].values[0]

    tta_tr = tr_row['mdl_tta'].values[0]
    tta_nt = nt_row['mdl_tta'].values[0]
    args = (calls, p_esc, t, calls_tr, calls_nt, tta_tr, tta_nt, aht_tr,
            aht_nt, m_tr, m_nt)
    p0 = (0.5, )
    res = minimize(t_obj,
                   x0=p0,
                   bounds=((0.1, 0.95), ),
                   args=args,
                   method='SLSQP')
    opt_pr = res.x[0]
    a_df.sort_values(by='type', inplace=True)  # NonTrip, Trip
    a_df['p_tr'] = [calls_nt / calls, calls_tr / calls]
    a_df['mdl_p_tr'] = [1 - opt_pr, opt_pr]
    a_df['mdl_adj_sla'] = [
        eA.sla_prob((1 - opt_pr) * calls, 1 / aht_nt, m_nt, 1 / tta_nt, t),
        eA.sla_prob((opt_pr + p_esc * (1 - opt_pr)) * calls, 1 / aht_tr, m_tr,
                    1 / tta_tr, t)
    ]
    a_df['mdl_adj_abn'] = [
        eA.abn_prob((1 - opt_pr) * calls, 1 / aht_nt, m_nt, 1 / tta_nt),
        eA.abn_prob((opt_pr + (1 - opt_pr) * p_esc) * calls, 1 / aht_tr, m_tr,
                    1 / tta_tr)
    ]
    return a_df
コード例 #3
0
def t_obj(p_tr, *args):
    # basic objective function for optimal routing: minimize the sum of mse of SLA and ABN for both trip and not trip
    # we could weight TR more heavily
    # Note that that obj function ensure to be close to the SLA and ABN but we may violate them
    # should try constraints on TR and minimize on NT
    calls, p_esc, t, calls_tr, calls_nt, tta_tr, tta_nt, aht_tr, aht_nt, m_tr, m_nt = args
    nt_abn = eA.abn_prob((1 - p_tr) * calls, 1 / aht_nt, m_nt, 1 / tta_nt)
    tr_abn = eA.abn_prob((p_tr + (1 - p_tr) * p_esc) * calls, 1 / aht_tr, m_tr,
                         1 / tta_tr)
    nt_sla = eA.sla_prob((1 - p_tr) * calls, 1 / aht_nt, m_nt, 1 / tta_nt, t)
    tr_sla = eA.sla_prob((p_tr + p_esc * (1 - p_tr)) * calls, 1 / aht_tr, m_tr,
                         1 / tta_tr, t)

    try:
        nt_abn_err = (0.15 - nt_abn)**2
        tr_abn_err = (0.15 - tr_abn)**2
        nt_sla_err = (0.8 - nt_sla)**2
        tr_sla_err = (0.8 - tr_sla)**2
        return tr_sla_err + tr_abn_err + nt_sla_err + nt_abn_err
    except TypeError:
        print('OBJ:::' + str(calls) + ' ' + str(p_tr) + ' nt: ' +
              str((1 - p_tr) * calls) + ' tr: ' + str((p_tr + p_esc *
                                                       (1 - p_tr)) * calls, ))
        return 100
コード例 #4
0
def fit_mdl(row, aht_tr, aht_nt, t):
    # finds TTA and AHT for each row in the data
    # x0 = TTA, AHT
    aht = get_aht(row, aht_tr, aht_nt)
    bounds = ((1, 50), (0.5 * aht, 2.0 * aht))
    x0 = tuple([(x[0] + x[1]) / 2 for x in bounds])
    args = (row, t)
    res = minimize(fit_mdl_obj,
                   x0=x0,
                   bounds=bounds,
                   args=args,
                   method='SLSQP')
    if res.status == 0:
        row['mdl_tta'], row['mdl_aht'] = res.x
        row['mdl_pct_abn'] = eA.abn_prob(row['calls'], 1 / row['mdl_aht'],
                                         row['servers'], 1 / row['mdl_tta'])
        row['mdl_sla_120'] = eA.sla_prob(row['calls'], 1 / row['mdl_aht'],
                                         row['servers'], 1 / row['mdl_tta'], t)
    else:
        print('no convergence for ' + str(row))
    return row
コード例 #5
0
ファイル: budget.py プロジェクト: josepm/Queueing

lbda_arr, TTA_arr, m_arr, pab_arr, t_arr, q_arr, util_arr = list(), list(
), list(), list(), list(), list(), list()
for TTA in [5, 10, 15]:
    theta = 1 / TTA
    for lbda in np.linspace(10, 100, 10):
        m_max = 4 * lbda / mu
        for t in np.linspace(0, 5, 6):
            m = m_max
            w = eA.sla_prob(lbda, mu, m_max, theta, t) - q_SLA
            while w >= 0:
                m -= 1
                w = eA.sla_prob(lbda, mu, m, theta, t) - q_SLA

            pab = eA.abn_prob(lbda, mu, m, theta)
            lbda_arr.append(lbda)
            TTA_arr.append(TTA)
            m_arr.append(m)
            pab_arr.append(pab)
            t_arr.append(t)
            q_arr.append(eA.sla_prob(lbda, mu, m, theta, t))
            util_arr.append(lbda * (1 - pab) / (m * mu))
            print('lbda: ' + str(lbda) + ' t: ' + str(t) + ' m: ' +
                  str(int(m)) + ' pab: ' +
                  str(eA.abn_prob(lbda, mu, m, theta)) + ' q: ' +
                  str(eA.sla_prob(lbda, mu, m, theta, t)))
df = pd.DataFrame({
    'interactions/min': lbda_arr,
    'prob_abn': pab_arr,
    'TTA': TTA_arr,