def prepare_option_infos(self) -> List[OptionInfo]: model = OptionInfo(name='Model', direction=OptionDirection.OUTPUT, values=['MODEL']) classes = OptionInfo(name='Class', direction=OptionDirection.PARAMETER, values=['10']) return [model, classes]
def prepare_option_infos(cls): model = OptionInfo( name='Model', direction=OptionDirection.OUTPUT, values=['MODEL']) size = OptionInfo( name='Size', direction=OptionDirection.PARAMETER, values=['28']) channel = OptionInfo( name='Channel', direction=OptionDirection.PARAMETER, values=['1']) return [model, size, channel]
def prepare_option_infos(self) -> List[OptionInfo]: model = OptionInfo(name='Model', direction=OptionDirection.OUTPUT, values=['MODEL']) size = OptionInfo(name='Size', direction=OptionDirection.PARAMETER, values=['28']) channel = OptionInfo(name='Channel', direction=OptionDirection.PARAMETER, values=['1']) cls = OptionInfo(name='Class', direction=OptionDirection.PARAMETER, values=['10']) return [model, size, channel, cls]
def prepare_option_infos(self) -> List[OptionInfo]: src = OptionInfo(name='SrcModel', direction=OptionDirection.INPUT, values=['MODEL']) dest = OptionInfo(name='DestModel', direction=OptionDirection.OUTPUT, values=['MODEL']) optimizer = OptionInfo(name='Optimizer', direction=OptionDirection.PARAMETER, values=['SGD,Adam']) lr = OptionInfo(name='LearningRate', direction=OptionDirection.PARAMETER, values=['0.01']) return [src, dest, optimizer, lr]
def prepare_option_infos(self) -> List[OptionInfo]: src = OptionInfo(name='ModelFile', direction=OptionDirection.INPUT, values=['MODEL_FILE']) data = OptionInfo(name='TestDataset', direction=OptionDirection.INPUT, values=['TEST_DATASET']) size = OptionInfo(name='TestDatasetSize', direction=OptionDirection.INPUT, values=['TEST_DATASET_SIZE']) prediction_type = OptionInfo(name='Prediction', direction=OptionDirection.PARAMETER, values=['Multiple', 'Binarization']) bin_class = OptionInfo(name='Prediction.BinarizationClass', direction=OptionDirection.PARAMETER, values=['0']) bin_threshold = OptionInfo(name='Prediction.BinarizationThreshold', direction=OptionDirection.PARAMETER, values=['0.5']) return [src, data, size, prediction_type, bin_class, bin_threshold]
def prepare_option_infos(self) -> List[OptionInfo]: model = OptionInfo(name='Model', direction=OptionDirection.INPUT, values=['MODEL']) train = OptionInfo(name='TrainDataset', direction=OptionDirection.INPUT, values=['TRAIN_DATASET']) train_size = OptionInfo(name='TrainDatasetSize', direction=OptionDirection.INPUT, values=['TRAIN_DATASET_SIZE']) validation = OptionInfo(name='ValidaitonDataset', direction=OptionDirection.INPUT, values=['VALIDATION_DATASET']) validation_size = OptionInfo(name='ValidationDatasetSize', direction=OptionDirection.INPUT, values=['VALIDATION_DATASET_SIZE']) tensorboard = OptionInfo(name='TensorBoard', direction=OptionDirection.PARAMETER, values=['True', 'False']) trial_name = OptionInfo(name='TraialName', direction=OptionDirection.PARAMETER, values=['traial1']) early_stopping = OptionInfo(name='EarlyStopping', direction=OptionDirection.PARAMETER, values=['True', 'False']) early_stopping_patience = OptionInfo( name='EarlyStopping.Patience', direction=OptionDirection.PARAMETER, values=['5']) early_stopping_monitor = OptionInfo( name='EarlyStopping.Monitor', direction=OptionDirection.PARAMETER, values=['loss', 'val_loss']) check_point = OptionInfo(name='ModelCheckpoint', direction=OptionDirection.PARAMETER, values=['True', 'False']) check_point_save_best = OptionInfo(name='ModelCheckpoint.SaveBestOnly', direction=OptionDirection.PARAMETER, values=['True', 'False']) check_point_save_weigths_only = OptionInfo( name='ModelCheckpoint.SaveWeightsOnly', direction=OptionDirection.PARAMETER, values=['True', 'False']) check_point_file_path = OptionInfo(name='ModelCheckpoint.FilePath', direction=OptionDirection.PARAMETER, values=['weights.hdf5']) # values=['weights-{epoch:02d}-{val_loss:.2f}.hdf5']) max_epoch = OptionInfo(name='MaxEpoch', direction=OptionDirection.PARAMETER, values=['10']) batch = OptionInfo(name='BatchSize', direction=OptionDirection.PARAMETER, values=['100']) return [ model, train, train_size, validation, validation_size, tensorboard, trial_name, early_stopping, early_stopping_patience, early_stopping_monitor, check_point, check_point_save_best, check_point_save_weigths_only, check_point_file_path, max_epoch, batch ]