コード例 #1
0
ファイル: learning.py プロジェクト: anton-bannykh/ml-2013
def learn(maxRating, nUsers, nItems, X, Y, testX):
    assert (len(X) == len(Y))
    movieMean = centerMean(X, Y, nItems)

    trainSize = int(len(X) * trainRatio)
    trainX, trainY = X[:trainSize], Y[:trainSize]
    crossvalX, crossvalY = X[trainSize:], Y[trainSize:]

    learningMethod = methodByName(methodName)
    recs = [
        learningMethod(maxRating, nUsers, nItems, trainX, trainY, L)
        for L in lRange
    ]

    trainErrors = [errors.rmse(recommend(rec, trainX), trainY) for rec in recs]
    crossvalErrors = [
        errors.rmse(recommend(rec, crossvalX), crossvalY) for rec in recs
    ]

    plotErrors(lRange, trainErrors, crossvalErrors)
    bestError, bestL, bestRec = min(zip(crossvalErrors, lRange, recs))

    testY = recommend(bestRec, testX)
    for i in range(len(testX)):
        testY[i] += movieMean[testX[i][1]]

    return bestL, testY
コード例 #2
0
ファイル: main.py プロジェクト: VArtem/ml-2013
def solveOne(setN, setName, ansName):
    startTime = time()
    maxRating, nUsers, nItems, trainX, trainY, testX, testY = loadData(setName, ansName)

    print("Set #{0}: read {1} users, {2} items, {3} train set ratings and {4} test set ratings".format(setN, nUsers,
                                                                                                       nItems,
                                                                                                       len(trainX),
                                                                                                       len(testX)))
    bestL, predictedRs = learn(maxRating, nUsers, nItems, trainX, trainY, testX)
    print("Set #{0}: RMSE = {1}, best λ = {2}".format(setN, errors.rmse(predictedRs, testY), bestL))
    endTime = time()
    print("Set #{0}: Leaning done in {1} seconds".format(setN, endTime - startTime))
コード例 #3
0
ファイル: learning.py プロジェクト: VArtem/ml-2013
def learn(maxRating, nUsers, nItems, X, Y, testX):
    assert (len(X) == len(Y))
    movieMean = centerMean(X, Y, nItems)

    trainSize = int(len(X) * trainRatio)
    trainX, trainY = X[:trainSize], Y[:trainSize]
    crossvalX, crossvalY = X[trainSize:], Y[trainSize:]

    learningMethod = methodByName(methodName)
    recs = [learningMethod(maxRating, nUsers, nItems, trainX, trainY, L) for L in lRange]

    trainErrors = [errors.rmse(recommend(rec, trainX), trainY) for rec in recs]
    crossvalErrors = [errors.rmse(recommend(rec, crossvalX), crossvalY) for rec in recs]

    plotErrors(lRange, trainErrors, crossvalErrors)
    bestError, bestL, bestRec = min(zip(crossvalErrors, lRange, recs))

    testY = recommend(bestRec, testX)
    for i in range(len(testX)):
        testY[i] += movieMean[testX[i][1]]

    return bestL, testY
コード例 #4
0
def solveOne(setN, setName, ansName):
    startTime = time()
    maxRating, nUsers, nItems, trainX, trainY, testX, testY = loadData(
        setName, ansName)

    print(
        "Set #{0}: read {1} users, {2} items, {3} train set ratings and {4} test set ratings"
        .format(setN, nUsers, nItems, len(trainX), len(testX)))
    bestL, predictedRs = learn(maxRating, nUsers, nItems, trainX, trainY,
                               testX)
    print("Set #{0}: RMSE = {1}, best λ = {2}".format(
        setN, errors.rmse(predictedRs, testY), bestL))
    endTime = time()
    print("Set #{0}: Leaning done in {1} seconds".format(
        setN, endTime - startTime))