コード例 #1
0
def hofm_plot_params(cfg, hofm_var, var_number, observations):
    """Prepeare configuration for Hovmoeller plot."""

    model_filenames = get_clim_model_filenames(cfg, hofm_var)
    model_filenames = OrderedDict(
        sorted(model_filenames.items(), key=lambda t: t[0]))
    # remove "model" that contain observations,
    # since there will be no monthly data
    model_filenames = model_filenames.copy()
    if observations:
        del model_filenames[observations]
    # set the color map if not default
    if cfg['hofm_cmap']:
        cmap = get_cmap(cfg['hofm_cmap'][var_number])
    else:
        cmap = get_cmap('Spectral_r')
    # set the number of columns in the output figure
    # if defined
    if cfg['hofm_ncol']:
        ncols = cfg['hofm_ncol']
    else:
        ncols = 3
    # get the levels for plots of this variable
    vmin, vmax, sstep, roundlimit = cfg['hofm_limits'][var_number]
    plot_params = {}
    plot_params['variable'] = hofm_var
    plot_params['model_filenames'] = model_filenames
    plot_params['cmap'] = cmap
    plot_params['ncols'] = ncols
    plot_params['levels'] = np.round(np.linspace(vmin, vmax, sstep),
                                     roundlimit)
    plot_params['observations'] = observations

    return plot_params
コード例 #2
0
def plot2d_bias_params(cfg, plot2d_bias_var, var_number, observations):
    """Prepeare configuration for plot2d bias."""

    model_filenames = get_clim_model_filenames(cfg, plot2d_bias_var)
    model_filenames = OrderedDict(
        sorted(model_filenames.items(), key=lambda t: t[0]))
    # setup the color map
    if cfg['plot2d_bias_cmap']:
        cmap = get_cmap(cfg['plot2d_bias_cmap'][var_number])
    else:
        cmap = get_cmap('Spectral_r')
    # setup the number of columns
    if cfg['plot2d_bias_ncol']:
        ncols = cfg['plot2d_bias_ncol']
    else:
        ncols = 3
    # setup color limits
    vmin, vmax, sstep, roundlimit = cfg['plot2d_bias_limits'][var_number]

    plot_params = {}
    plot_params['variable'] = plot2d_bias_var
    plot_params['model_filenames'] = model_filenames
    plot_params['cmap'] = cmap
    plot_params['ncols'] = ncols
    plot_params['levels'] = np.round(np.linspace(vmin, vmax, sstep),
                                     roundlimit)
    plot_params['dpi'] = 100
    plot_params['observations'] = observations
    plot_params['projection'] = ccrs.NorthPolarStereo()
    plot_params['bbox'] = (-180, 180, 60, 90)
    return plot_params
コード例 #3
0
def run_hofm_data(cfg):
    """Extract data for Hovmoeller diagrams.

    Parameters
    ----------
    cfg: dict
        configuration dictionary ESMValTool format.
    areacello_fx : dict
        configuration dictionary with names of the areacello_fx
        files associated to dataset names.
    diagworkdir: str
        path to the diagnostic work directory.
    """
    logger.info("The `hofm_data` is True, going \
                 to extract monthly values for `hofm_regions`")

    logger.info("`hofm_vars` are: %s", cfg['hofm_vars'])
    # doing the loop for every variable
    for hofm_var in cfg['hofm_vars']:
        logger.info("Processing %s", hofm_var)
        # get dictionary with model names as key and path to the
        # preprocessed file as a value
        model_filenames = get_clim_model_filenames(cfg, hofm_var)
        model_filenames = OrderedDict(
            sorted(model_filenames.items(), key=lambda t: t[0]))
        # loop over regions and models
        for mmodel, region in itertools.product(model_filenames,
                                                cfg['hofm_regions']):
            # actual extraction of the data for specific model and region
            hofm_data(cfg, model_filenames, mmodel, hofm_var, region)
コード例 #4
0
def run_aw_core_2d(cfg, aw_core_parameters):
    """Plot temperature spatial distribution at AW core depth.

    Parameters
    ----------
    cfg: dict
        configuration dictionary ESMValTool format.
    aw_core_parameters: dict
        dictionary that contain AW core parameters generated
        by run_aw_core function.
    """
    model_filenames = get_clim_model_filenames(cfg, 'thetao')
    model_filenames = OrderedDict(
        sorted(model_filenames.items(), key=lambda t: t[0]))
    aw_core_parameters = aw_core(model_filenames, cfg['work_dir'], 'EB',
                                 'thetao')
    # this is now just using plot2d_original_grid with
    # additional `explicit_depths` parameter
    plot_params = {}
    plot_params['variable'] = 'thetao'
    plot_params['model_filenames'] = model_filenames
    plot_params['depth'] = 0
    plot_params['cmap'] = cm.Spectral_r
    plot_params['ncols'] = 4
    plot_params['levels'] = np.round(np.linspace(-2, 2.3, 41), 1)
    plot_params['dpi'] = 100
    plot_params['explicit_depths'] = aw_core_parameters
    plot_params['projection'] = ccrs.NorthPolarStereo()
    plot_params['bbox'] = (-180, 180, 60, 90)

    plot2d_original_grid(cfg, plot_params)
コード例 #5
0
def plot2d_params(cfg, plot2d_var, var_number):
    """Prepeare configuration for plot2d."""

    model_filenames = get_clim_model_filenames(cfg, plot2d_var)
    model_filenames = OrderedDict(
        sorted(model_filenames.items(), key=lambda t: t[0]))
    # set the color map
    if cfg['plot2d_cmap']:
        cmap = get_cmap(cfg['plot2d_cmap'][var_number])
    else:
        cmap = get_cmap('Spectral_r')
    # set the number of columns in the plot
    if cfg['plot2d_ncol']:
        ncols = cfg['plot2d_ncol']
    else:
        ncols = 4
    # create color limits for the plot
    vmin, vmax, sstep, roundlimit = cfg['plot2d_limits'][var_number]
    # loop over depths
    plot_params = {}
    plot_params['variable'] = plot2d_var
    plot_params['model_filenames'] = model_filenames
    plot_params['cmap'] = cmap
    plot_params['ncols'] = ncols
    plot_params['levels'] = np.round(np.linspace(vmin, vmax, sstep),
                                     roundlimit)
    plot_params['dpi'] = 100
    plot_params['explicit_depths'] = None
    plot_params['projection'] = ccrs.NorthPolarStereo()
    plot_params['bbox'] = (-180, 180, 60, 90)

    return plot_params
コード例 #6
0
def run_mean(cfg, observations):
    """Create time mean.

    Parameters
    ----------
    cfg: dict
        configuration dictionary ESMValTool format.
    observations: str
        name of the observation data set
    """
    # loop over variables
    for hofm_var in cfg['hofm_vars']:
        model_filenames = get_clim_model_filenames(
            cfg,
            hofm_var,
        )
        model_filenames = OrderedDict(
            sorted(model_filenames.items(), key=lambda t: t[0]))
        # loop over models
        for model in model_filenames:
            timmean(cfg,
                    model_filenames,
                    model,
                    hofm_var,
                    observations=observations)
コード例 #7
0
def run_aw_core(cfg):
    """Calculate depth and temperature of the Atlantic Water core.

    Parameters
    ----------
    cfg: dict
        configuration dictionary ESMValTool format.
    """
    model_filenames = get_clim_model_filenames(cfg, 'thetao')
    model_filenames = OrderedDict(
        sorted(model_filenames.items(), key=lambda t: t[0]))
    aw_core_parameters = aw_core(model_filenames, cfg['work_dir'], 'EB',
                                 'thetao')
    plot_aw_core_stat(aw_core_parameters, cfg['plot_dir'])
    return aw_core_parameters
コード例 #8
0
def plot_profile_params(cfg, hofm_var, observations):
    """Prepeare configuration for profile plot."""

    model_filenames = get_clim_model_filenames(cfg, hofm_var)
    model_filenames = OrderedDict(
        sorted(model_filenames.items(), key=lambda t: t[0]))

    plot_params = {}

    plot_params['variable'] = hofm_var
    plot_params['model_filenames'] = model_filenames
    plot_params['cmap'] = cm.Set2
    plot_params['dpi'] = 100
    plot_params['observations'] = observations

    return plot_params
コード例 #9
0
def tsdiag_plot_parameters(cfg):
    """Prepeare configuration for TS plots."""

    # get the dictionary with model file names
    model_filenames = get_clim_model_filenames(cfg, 'thetao')
    model_filenames = OrderedDict(
        sorted(model_filenames.items(), key=lambda t: t[0]))
    # setting the number of columns for the plot
    if cfg['tsdiag_ncol']:
        ncols = cfg['tsdiag_ncol']
    else:
        ncols = 3

    plot_params = {}
    plot_params['model_filenames'] = model_filenames
    plot_params['ncols'] = ncols
    plot_params['cmap'] = cm.Set1
    return plot_params
コード例 #10
0
def transect_plot_params(cfg, trans_var, var_number):
    """Prepeare configuration for transect plot."""

    model_filenames = get_clim_model_filenames(cfg, trans_var)
    model_filenames = OrderedDict(
        sorted(model_filenames.items(), key=lambda t: t[0]))
    # loop over regions
    for mmodel, region in itertools.product(model_filenames,
                                            cfg['transects_regions']):
        # ploting a transect
        transect_data(cfg, mmodel, trans_var, region)
    # setup a color map
    if cfg['transects_cmap']:
        cmap = get_cmap(cfg['transects_cmap'][var_number])
    else:
        cmap = get_cmap('Spectral_r')
    # setup number of columns
    if cfg['transects_ncol']:
        ncols = cfg['transects_ncol']
    else:
        ncols = 3
    # setup color limits
    vmin, vmax, sstep, roundlimit = cfg['transects_limits'][var_number]

    plot_params = {}
    plot_params['variable'] = trans_var
    plot_params['model_filenames'] = model_filenames
    plot_params['cmap'] = cmap
    plot_params['ncols'] = ncols
    plot_params['levels'] = np.round(np.linspace(vmin, vmax, sstep),
                                     roundlimit)
    plot_params['dpi'] = 100
    plot_params['projection'] = ccrs.NorthPolarStereo()
    plot_params['bbox'] = (-180, 180, 60, 90)

    return plot_params