def test_pytorch_freezable(): from espnet.nets.pytorch_backend.e2e_asr import E2E idim, odim, ilens, olens = get_default_scope_inputs() args = get_rnn_args(freeze_mods="enc.enc.0.") model = E2E(idim, odim, args) model, model_params = freeze_modules(model, args.freeze_mods) model.train()
def train(args): """Train with the given args. Args: args (namespace): The program arguments. """ set_deterministic_pytorch(args) if args.num_encs > 1: args = format_mulenc_args(args) # check cuda availability if not torch.cuda.is_available(): logging.warning("cuda is not available") # get input and output dimension info with open(args.valid_json, "rb") as f: valid_json = json.load(f)["utts"] utts = list(valid_json.keys()) idim_list = [ int(valid_json[utts[0]]["input"][i]["shape"][-1]) for i in range(args.num_encs) ] odim = int(valid_json[utts[0]]["output"][0]["shape"][-1]) for i in range(args.num_encs): logging.info("stream{}: input dims : {}".format(i + 1, idim_list[i])) logging.info("#output dims: " + str(odim)) # specify attention, CTC, hybrid mode if "transducer" in args.model_module: assert args.mtlalpha == 1.0 mtl_mode = "transducer" logging.info("Pure transducer mode") elif args.mtlalpha == 1.0: mtl_mode = "ctc" logging.info("Pure CTC mode") elif args.mtlalpha == 0.0: mtl_mode = "att" logging.info("Pure attention mode") else: mtl_mode = "mtl" logging.info("Multitask learning mode") if (args.enc_init is not None or args.dec_init is not None) and args.num_encs == 1: model = load_trained_modules(idim_list[0], odim, args) else: model_class = dynamic_import(args.model_module) model = model_class(idim_list[0] if args.num_encs == 1 else idim_list, odim, args) assert isinstance(model, ASRInterface) logging.info(" Total parameter of the model = " + str(sum(p.numel() for p in model.parameters()))) if args.rnnlm is not None: rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf) rnnlm = lm_pytorch.ClassifierWithState( lm_pytorch.RNNLM(len(args.char_list), rnnlm_args.layer, rnnlm_args.unit)) torch_load(args.rnnlm, rnnlm) model.rnnlm = rnnlm # write model config if not os.path.exists(args.outdir): os.makedirs(args.outdir) model_conf = args.outdir + "/model.json" with open(model_conf, "wb") as f: logging.info("writing a model config file to " + model_conf) f.write( json.dumps( (idim_list[0] if args.num_encs == 1 else idim_list, odim, vars(args)), indent=4, ensure_ascii=False, sort_keys=True, ).encode("utf_8")) for key in sorted(vars(args).keys()): logging.info("ARGS: " + key + ": " + str(vars(args)[key])) reporter = model.reporter # check the use of multi-gpu if args.ngpu > 1: if args.batch_size != 0: logging.warning( "batch size is automatically increased (%d -> %d)" % (args.batch_size, args.batch_size * args.ngpu)) args.batch_size *= args.ngpu if args.num_encs > 1: # TODO(ruizhili): implement data parallel for multi-encoder setup. raise NotImplementedError( "Data parallel is not supported for multi-encoder setup.") # set torch device device = torch.device("cuda" if args.ngpu > 0 else "cpu") if args.train_dtype in ("float16", "float32", "float64"): dtype = getattr(torch, args.train_dtype) else: dtype = torch.float32 model = model.to(device=device, dtype=dtype) if args.freeze_mods: model, model_params = freeze_modules(model, args.freeze_mods) else: model_params = model.parameters() # Setup an optimizer if args.opt == "adadelta": optimizer = torch.optim.Adadelta(model_params, rho=0.95, eps=args.eps, weight_decay=args.weight_decay) elif args.opt == "adam": optimizer = torch.optim.Adam(model_params, weight_decay=args.weight_decay) elif args.opt == "noam": from espnet.nets.pytorch_backend.transformer.optimizer import get_std_opt optimizer = get_std_opt(model_params, args.adim, args.transformer_warmup_steps, args.transformer_lr) else: raise NotImplementedError("unknown optimizer: " + args.opt) # setup apex.amp if args.train_dtype in ("O0", "O1", "O2", "O3"): try: from apex import amp except ImportError as e: logging.error( f"You need to install apex for --train-dtype {args.train_dtype}. " "See https://github.com/NVIDIA/apex#linux") raise e if args.opt == "noam": model, optimizer.optimizer = amp.initialize( model, optimizer.optimizer, opt_level=args.train_dtype) else: model, optimizer = amp.initialize(model, optimizer, opt_level=args.train_dtype) use_apex = True from espnet.nets.pytorch_backend.ctc import CTC amp.register_float_function(CTC, "loss_fn") amp.init() logging.warning("register ctc as float function") else: use_apex = False # FIXME: TOO DIRTY HACK setattr(optimizer, "target", reporter) setattr(optimizer, "serialize", lambda s: reporter.serialize(s)) # Setup a converter if args.num_encs == 1: converter = CustomConverter(subsampling_factor=model.subsample[0], dtype=dtype) else: converter = CustomConverterMulEnc([i[0] for i in model.subsample_list], dtype=dtype) # read json data with open(args.train_json, "rb") as f: train_json = json.load(f)["utts"] with open(args.valid_json, "rb") as f: valid_json = json.load(f)["utts"] use_sortagrad = args.sortagrad == -1 or args.sortagrad > 0 # make minibatch list (variable length) train = make_batchset( train_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, min_batch_size=args.ngpu if args.ngpu > 1 else 1, shortest_first=use_sortagrad, count=args.batch_count, batch_bins=args.batch_bins, batch_frames_in=args.batch_frames_in, batch_frames_out=args.batch_frames_out, batch_frames_inout=args.batch_frames_inout, iaxis=0, oaxis=0, ) valid = make_batchset( valid_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, min_batch_size=args.ngpu if args.ngpu > 1 else 1, count=args.batch_count, batch_bins=args.batch_bins, batch_frames_in=args.batch_frames_in, batch_frames_out=args.batch_frames_out, batch_frames_inout=args.batch_frames_inout, iaxis=0, oaxis=0, ) load_tr = LoadInputsAndTargets( mode="asr", load_output=True, preprocess_conf=args.preprocess_conf, preprocess_args={"train": True}, # Switch the mode of preprocessing ) load_cv = LoadInputsAndTargets( mode="asr", load_output=True, preprocess_conf=args.preprocess_conf, preprocess_args={"train": False}, # Switch the mode of preprocessing ) # hack to make batchsize argument as 1 # actual bathsize is included in a list # default collate function converts numpy array to pytorch tensor # we used an empty collate function instead which returns list train_iter = ChainerDataLoader( dataset=TransformDataset(train, lambda data: converter([load_tr(data)])), batch_size=1, num_workers=args.n_iter_processes, shuffle=not use_sortagrad, collate_fn=lambda x: x[0], ) valid_iter = ChainerDataLoader( dataset=TransformDataset(valid, lambda data: converter([load_cv(data)])), batch_size=1, shuffle=False, collate_fn=lambda x: x[0], num_workers=args.n_iter_processes, ) # Set up a trainer updater = CustomUpdater( model, args.grad_clip, {"main": train_iter}, optimizer, device, args.ngpu, args.grad_noise, args.accum_grad, use_apex=use_apex, ) trainer = training.Trainer(updater, (args.epochs, "epoch"), out=args.outdir) if use_sortagrad: trainer.extend( ShufflingEnabler([train_iter]), trigger=(args.sortagrad if args.sortagrad != -1 else args.epochs, "epoch"), ) # Resume from a snapshot if args.resume: logging.info("resumed from %s" % args.resume) torch_resume(args.resume, trainer) # Evaluate the model with the test dataset for each epoch if args.save_interval_iters > 0: trainer.extend( CustomEvaluator(model, {"main": valid_iter}, reporter, device, args.ngpu), trigger=(args.save_interval_iters, "iteration"), ) else: trainer.extend( CustomEvaluator(model, {"main": valid_iter}, reporter, device, args.ngpu)) # Save attention weight at each epoch is_attn_plot = (mtl_mode in ["att", "mtl"] or "transformer" in args.model_module or "conformer" in args.model_module) if args.num_save_attention > 0 and is_attn_plot: data = sorted( list(valid_json.items())[:args.num_save_attention], key=lambda x: int(x[1]["input"][0]["shape"][1]), reverse=True, ) if hasattr(model, "module"): att_vis_fn = model.module.calculate_all_attentions plot_class = model.module.attention_plot_class else: att_vis_fn = model.calculate_all_attentions plot_class = model.attention_plot_class att_reporter = plot_class( att_vis_fn, data, args.outdir + "/att_ws", converter=converter, transform=load_cv, device=device, ) trainer.extend(att_reporter, trigger=(1, "epoch")) else: att_reporter = None # Make a plot for training and validation values if args.num_encs > 1: report_keys_loss_ctc = [ "main/loss_ctc{}".format(i + 1) for i in range(model.num_encs) ] + [ "validation/main/loss_ctc{}".format(i + 1) for i in range(model.num_encs) ] report_keys_cer_ctc = [ "main/cer_ctc{}".format(i + 1) for i in range(model.num_encs) ] + [ "validation/main/cer_ctc{}".format(i + 1) for i in range(model.num_encs) ] trainer.extend( extensions.PlotReport( [ "main/loss", "validation/main/loss", "main/loss_ctc", "validation/main/loss_ctc", "main/loss_att", "validation/main/loss_att", ] + ([] if args.num_encs == 1 else report_keys_loss_ctc), "epoch", file_name="loss.png", )) trainer.extend( extensions.PlotReport(["main/acc", "validation/main/acc"], "epoch", file_name="acc.png")) trainer.extend( extensions.PlotReport( ["main/cer_ctc", "validation/main/cer_ctc"] + ([] if args.num_encs == 1 else report_keys_loss_ctc), "epoch", file_name="cer.png", )) # Save best models trainer.extend( snapshot_object(model, "model.loss.best"), trigger=training.triggers.MinValueTrigger("validation/main/loss"), ) if mtl_mode not in ["ctc", "transducer"]: trainer.extend( snapshot_object(model, "model.acc.best"), trigger=training.triggers.MaxValueTrigger("validation/main/acc"), ) # save snapshot which contains model and optimizer states if args.save_interval_iters > 0: trainer.extend( torch_snapshot(filename="snapshot.iter.{.updater.iteration}"), trigger=(args.save_interval_iters, "iteration"), ) else: trainer.extend(torch_snapshot(), trigger=(1, "epoch")) # epsilon decay in the optimizer if args.opt == "adadelta": if args.criterion == "acc" and mtl_mode != "ctc": trainer.extend( restore_snapshot(model, args.outdir + "/model.acc.best", load_fn=torch_load), trigger=CompareValueTrigger( "validation/main/acc", lambda best_value, current_value: best_value > current_value, ), ) trainer.extend( adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( "validation/main/acc", lambda best_value, current_value: best_value > current_value, ), ) elif args.criterion == "loss": trainer.extend( restore_snapshot(model, args.outdir + "/model.loss.best", load_fn=torch_load), trigger=CompareValueTrigger( "validation/main/loss", lambda best_value, current_value: best_value < current_value, ), ) trainer.extend( adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( "validation/main/loss", lambda best_value, current_value: best_value < current_value, ), ) # Write a log of evaluation statistics for each epoch trainer.extend( extensions.LogReport(trigger=(args.report_interval_iters, "iteration"))) report_keys = [ "epoch", "iteration", "main/loss", "main/loss_ctc", "main/loss_att", "validation/main/loss", "validation/main/loss_ctc", "validation/main/loss_att", "main/acc", "validation/main/acc", "main/cer_ctc", "validation/main/cer_ctc", "elapsed_time", ] + ([] if args.num_encs == 1 else report_keys_cer_ctc + report_keys_loss_ctc) if args.opt == "adadelta": trainer.extend( extensions.observe_value( "eps", lambda trainer: trainer.updater.get_optimizer("main"). param_groups[0]["eps"], ), trigger=(args.report_interval_iters, "iteration"), ) report_keys.append("eps") if args.report_cer: report_keys.append("validation/main/cer") if args.report_wer: report_keys.append("validation/main/wer") trainer.extend( extensions.PrintReport(report_keys), trigger=(args.report_interval_iters, "iteration"), ) trainer.extend( extensions.ProgressBar(update_interval=args.report_interval_iters)) set_early_stop(trainer, args) if args.tensorboard_dir is not None and args.tensorboard_dir != "": trainer.extend( TensorboardLogger(SummaryWriter(args.tensorboard_dir), att_reporter), trigger=(args.report_interval_iters, "iteration"), ) # Run the training trainer.run() check_early_stop(trainer, args.epochs)
model = model_class(idim, odim_dict, args, languages) model_conf = args.outdir + "/model.json" with open(model_conf, "wb") as f: logging.info("writing a model config file to " + model_conf) f.write( json.dumps( (idim, odim_dict, vars(args)), indent=4, ensure_ascii=False, sort_keys=True, ).encode("utf_8")) model.cuda() if args.freeze_mods: model, model_params = freeze_modules(model, args.freeze_mods) else: model_params = model.parameters() logging.warning("Trainable parameters:") for name, parameter in model.named_parameters(): if parameter.requires_grad: logging.warning(name) # Setup an optimizer if args.meta_train: logging.warning( f"Use Adam optimizer with lr={args.adam_lr}, beta0=0 for meta-training inner step" ) optimizer = torch.optim.Adam(model_params, lr=args.adam_lr,