コード例 #1
0
def test_pytorch_freezable():
    from espnet.nets.pytorch_backend.e2e_asr import E2E

    idim, odim, ilens, olens = get_default_scope_inputs()
    args = get_rnn_args(freeze_mods="enc.enc.0.")

    model = E2E(idim, odim, args)
    model, model_params = freeze_modules(model, args.freeze_mods)

    model.train()
コード例 #2
0
def train(args):
    """Train with the given args.

    Args:
        args (namespace): The program arguments.

    """
    set_deterministic_pytorch(args)
    if args.num_encs > 1:
        args = format_mulenc_args(args)

    # check cuda availability
    if not torch.cuda.is_available():
        logging.warning("cuda is not available")

    # get input and output dimension info
    with open(args.valid_json, "rb") as f:
        valid_json = json.load(f)["utts"]
    utts = list(valid_json.keys())
    idim_list = [
        int(valid_json[utts[0]]["input"][i]["shape"][-1])
        for i in range(args.num_encs)
    ]
    odim = int(valid_json[utts[0]]["output"][0]["shape"][-1])
    for i in range(args.num_encs):
        logging.info("stream{}: input dims : {}".format(i + 1, idim_list[i]))
    logging.info("#output dims: " + str(odim))

    # specify attention, CTC, hybrid mode
    if "transducer" in args.model_module:
        assert args.mtlalpha == 1.0
        mtl_mode = "transducer"
        logging.info("Pure transducer mode")
    elif args.mtlalpha == 1.0:
        mtl_mode = "ctc"
        logging.info("Pure CTC mode")
    elif args.mtlalpha == 0.0:
        mtl_mode = "att"
        logging.info("Pure attention mode")
    else:
        mtl_mode = "mtl"
        logging.info("Multitask learning mode")

    if (args.enc_init is not None
            or args.dec_init is not None) and args.num_encs == 1:
        model = load_trained_modules(idim_list[0], odim, args)
    else:
        model_class = dynamic_import(args.model_module)
        model = model_class(idim_list[0] if args.num_encs == 1 else idim_list,
                            odim, args)
    assert isinstance(model, ASRInterface)

    logging.info(" Total parameter of the model = " +
                 str(sum(p.numel() for p in model.parameters())))

    if args.rnnlm is not None:
        rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
        rnnlm = lm_pytorch.ClassifierWithState(
            lm_pytorch.RNNLM(len(args.char_list), rnnlm_args.layer,
                             rnnlm_args.unit))
        torch_load(args.rnnlm, rnnlm)
        model.rnnlm = rnnlm

    # write model config
    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)
    model_conf = args.outdir + "/model.json"
    with open(model_conf, "wb") as f:
        logging.info("writing a model config file to " + model_conf)
        f.write(
            json.dumps(
                (idim_list[0] if args.num_encs == 1 else idim_list, odim,
                 vars(args)),
                indent=4,
                ensure_ascii=False,
                sort_keys=True,
            ).encode("utf_8"))
    for key in sorted(vars(args).keys()):
        logging.info("ARGS: " + key + ": " + str(vars(args)[key]))

    reporter = model.reporter

    # check the use of multi-gpu
    if args.ngpu > 1:
        if args.batch_size != 0:
            logging.warning(
                "batch size is automatically increased (%d -> %d)" %
                (args.batch_size, args.batch_size * args.ngpu))
            args.batch_size *= args.ngpu
        if args.num_encs > 1:
            # TODO(ruizhili): implement data parallel for multi-encoder setup.
            raise NotImplementedError(
                "Data parallel is not supported for multi-encoder setup.")

    # set torch device
    device = torch.device("cuda" if args.ngpu > 0 else "cpu")
    if args.train_dtype in ("float16", "float32", "float64"):
        dtype = getattr(torch, args.train_dtype)
    else:
        dtype = torch.float32
    model = model.to(device=device, dtype=dtype)

    if args.freeze_mods:
        model, model_params = freeze_modules(model, args.freeze_mods)
    else:
        model_params = model.parameters()

    # Setup an optimizer
    if args.opt == "adadelta":
        optimizer = torch.optim.Adadelta(model_params,
                                         rho=0.95,
                                         eps=args.eps,
                                         weight_decay=args.weight_decay)
    elif args.opt == "adam":
        optimizer = torch.optim.Adam(model_params,
                                     weight_decay=args.weight_decay)
    elif args.opt == "noam":
        from espnet.nets.pytorch_backend.transformer.optimizer import get_std_opt

        optimizer = get_std_opt(model_params, args.adim,
                                args.transformer_warmup_steps,
                                args.transformer_lr)
    else:
        raise NotImplementedError("unknown optimizer: " + args.opt)

    # setup apex.amp
    if args.train_dtype in ("O0", "O1", "O2", "O3"):
        try:
            from apex import amp
        except ImportError as e:
            logging.error(
                f"You need to install apex for --train-dtype {args.train_dtype}. "
                "See https://github.com/NVIDIA/apex#linux")
            raise e
        if args.opt == "noam":
            model, optimizer.optimizer = amp.initialize(
                model, optimizer.optimizer, opt_level=args.train_dtype)
        else:
            model, optimizer = amp.initialize(model,
                                              optimizer,
                                              opt_level=args.train_dtype)
        use_apex = True

        from espnet.nets.pytorch_backend.ctc import CTC

        amp.register_float_function(CTC, "loss_fn")
        amp.init()
        logging.warning("register ctc as float function")
    else:
        use_apex = False

    # FIXME: TOO DIRTY HACK
    setattr(optimizer, "target", reporter)
    setattr(optimizer, "serialize", lambda s: reporter.serialize(s))

    # Setup a converter
    if args.num_encs == 1:
        converter = CustomConverter(subsampling_factor=model.subsample[0],
                                    dtype=dtype)
    else:
        converter = CustomConverterMulEnc([i[0] for i in model.subsample_list],
                                          dtype=dtype)

    # read json data
    with open(args.train_json, "rb") as f:
        train_json = json.load(f)["utts"]
    with open(args.valid_json, "rb") as f:
        valid_json = json.load(f)["utts"]

    use_sortagrad = args.sortagrad == -1 or args.sortagrad > 0
    # make minibatch list (variable length)
    train = make_batchset(
        train_json,
        args.batch_size,
        args.maxlen_in,
        args.maxlen_out,
        args.minibatches,
        min_batch_size=args.ngpu if args.ngpu > 1 else 1,
        shortest_first=use_sortagrad,
        count=args.batch_count,
        batch_bins=args.batch_bins,
        batch_frames_in=args.batch_frames_in,
        batch_frames_out=args.batch_frames_out,
        batch_frames_inout=args.batch_frames_inout,
        iaxis=0,
        oaxis=0,
    )
    valid = make_batchset(
        valid_json,
        args.batch_size,
        args.maxlen_in,
        args.maxlen_out,
        args.minibatches,
        min_batch_size=args.ngpu if args.ngpu > 1 else 1,
        count=args.batch_count,
        batch_bins=args.batch_bins,
        batch_frames_in=args.batch_frames_in,
        batch_frames_out=args.batch_frames_out,
        batch_frames_inout=args.batch_frames_inout,
        iaxis=0,
        oaxis=0,
    )

    load_tr = LoadInputsAndTargets(
        mode="asr",
        load_output=True,
        preprocess_conf=args.preprocess_conf,
        preprocess_args={"train": True},  # Switch the mode of preprocessing
    )
    load_cv = LoadInputsAndTargets(
        mode="asr",
        load_output=True,
        preprocess_conf=args.preprocess_conf,
        preprocess_args={"train": False},  # Switch the mode of preprocessing
    )
    # hack to make batchsize argument as 1
    # actual bathsize is included in a list
    # default collate function converts numpy array to pytorch tensor
    # we used an empty collate function instead which returns list
    train_iter = ChainerDataLoader(
        dataset=TransformDataset(train,
                                 lambda data: converter([load_tr(data)])),
        batch_size=1,
        num_workers=args.n_iter_processes,
        shuffle=not use_sortagrad,
        collate_fn=lambda x: x[0],
    )
    valid_iter = ChainerDataLoader(
        dataset=TransformDataset(valid,
                                 lambda data: converter([load_cv(data)])),
        batch_size=1,
        shuffle=False,
        collate_fn=lambda x: x[0],
        num_workers=args.n_iter_processes,
    )

    # Set up a trainer
    updater = CustomUpdater(
        model,
        args.grad_clip,
        {"main": train_iter},
        optimizer,
        device,
        args.ngpu,
        args.grad_noise,
        args.accum_grad,
        use_apex=use_apex,
    )
    trainer = training.Trainer(updater, (args.epochs, "epoch"),
                               out=args.outdir)

    if use_sortagrad:
        trainer.extend(
            ShufflingEnabler([train_iter]),
            trigger=(args.sortagrad if args.sortagrad != -1 else args.epochs,
                     "epoch"),
        )

    # Resume from a snapshot
    if args.resume:
        logging.info("resumed from %s" % args.resume)
        torch_resume(args.resume, trainer)

    # Evaluate the model with the test dataset for each epoch
    if args.save_interval_iters > 0:
        trainer.extend(
            CustomEvaluator(model, {"main": valid_iter}, reporter, device,
                            args.ngpu),
            trigger=(args.save_interval_iters, "iteration"),
        )
    else:
        trainer.extend(
            CustomEvaluator(model, {"main": valid_iter}, reporter, device,
                            args.ngpu))

    # Save attention weight at each epoch
    is_attn_plot = (mtl_mode in ["att", "mtl"]
                    or "transformer" in args.model_module
                    or "conformer" in args.model_module)
    if args.num_save_attention > 0 and is_attn_plot:
        data = sorted(
            list(valid_json.items())[:args.num_save_attention],
            key=lambda x: int(x[1]["input"][0]["shape"][1]),
            reverse=True,
        )
        if hasattr(model, "module"):
            att_vis_fn = model.module.calculate_all_attentions
            plot_class = model.module.attention_plot_class
        else:
            att_vis_fn = model.calculate_all_attentions
            plot_class = model.attention_plot_class
        att_reporter = plot_class(
            att_vis_fn,
            data,
            args.outdir + "/att_ws",
            converter=converter,
            transform=load_cv,
            device=device,
        )
        trainer.extend(att_reporter, trigger=(1, "epoch"))
    else:
        att_reporter = None

    # Make a plot for training and validation values
    if args.num_encs > 1:
        report_keys_loss_ctc = [
            "main/loss_ctc{}".format(i + 1) for i in range(model.num_encs)
        ] + [
            "validation/main/loss_ctc{}".format(i + 1)
            for i in range(model.num_encs)
        ]
        report_keys_cer_ctc = [
            "main/cer_ctc{}".format(i + 1) for i in range(model.num_encs)
        ] + [
            "validation/main/cer_ctc{}".format(i + 1)
            for i in range(model.num_encs)
        ]
    trainer.extend(
        extensions.PlotReport(
            [
                "main/loss",
                "validation/main/loss",
                "main/loss_ctc",
                "validation/main/loss_ctc",
                "main/loss_att",
                "validation/main/loss_att",
            ] + ([] if args.num_encs == 1 else report_keys_loss_ctc),
            "epoch",
            file_name="loss.png",
        ))
    trainer.extend(
        extensions.PlotReport(["main/acc", "validation/main/acc"],
                              "epoch",
                              file_name="acc.png"))
    trainer.extend(
        extensions.PlotReport(
            ["main/cer_ctc", "validation/main/cer_ctc"] +
            ([] if args.num_encs == 1 else report_keys_loss_ctc),
            "epoch",
            file_name="cer.png",
        ))

    # Save best models
    trainer.extend(
        snapshot_object(model, "model.loss.best"),
        trigger=training.triggers.MinValueTrigger("validation/main/loss"),
    )
    if mtl_mode not in ["ctc", "transducer"]:
        trainer.extend(
            snapshot_object(model, "model.acc.best"),
            trigger=training.triggers.MaxValueTrigger("validation/main/acc"),
        )

    # save snapshot which contains model and optimizer states
    if args.save_interval_iters > 0:
        trainer.extend(
            torch_snapshot(filename="snapshot.iter.{.updater.iteration}"),
            trigger=(args.save_interval_iters, "iteration"),
        )
    else:
        trainer.extend(torch_snapshot(), trigger=(1, "epoch"))

    # epsilon decay in the optimizer
    if args.opt == "adadelta":
        if args.criterion == "acc" and mtl_mode != "ctc":
            trainer.extend(
                restore_snapshot(model,
                                 args.outdir + "/model.acc.best",
                                 load_fn=torch_load),
                trigger=CompareValueTrigger(
                    "validation/main/acc",
                    lambda best_value, current_value: best_value >
                    current_value,
                ),
            )
            trainer.extend(
                adadelta_eps_decay(args.eps_decay),
                trigger=CompareValueTrigger(
                    "validation/main/acc",
                    lambda best_value, current_value: best_value >
                    current_value,
                ),
            )
        elif args.criterion == "loss":
            trainer.extend(
                restore_snapshot(model,
                                 args.outdir + "/model.loss.best",
                                 load_fn=torch_load),
                trigger=CompareValueTrigger(
                    "validation/main/loss",
                    lambda best_value, current_value: best_value <
                    current_value,
                ),
            )
            trainer.extend(
                adadelta_eps_decay(args.eps_decay),
                trigger=CompareValueTrigger(
                    "validation/main/loss",
                    lambda best_value, current_value: best_value <
                    current_value,
                ),
            )

    # Write a log of evaluation statistics for each epoch
    trainer.extend(
        extensions.LogReport(trigger=(args.report_interval_iters,
                                      "iteration")))
    report_keys = [
        "epoch",
        "iteration",
        "main/loss",
        "main/loss_ctc",
        "main/loss_att",
        "validation/main/loss",
        "validation/main/loss_ctc",
        "validation/main/loss_att",
        "main/acc",
        "validation/main/acc",
        "main/cer_ctc",
        "validation/main/cer_ctc",
        "elapsed_time",
    ] + ([] if args.num_encs == 1 else report_keys_cer_ctc +
         report_keys_loss_ctc)
    if args.opt == "adadelta":
        trainer.extend(
            extensions.observe_value(
                "eps",
                lambda trainer: trainer.updater.get_optimizer("main").
                param_groups[0]["eps"],
            ),
            trigger=(args.report_interval_iters, "iteration"),
        )
        report_keys.append("eps")
    if args.report_cer:
        report_keys.append("validation/main/cer")
    if args.report_wer:
        report_keys.append("validation/main/wer")
    trainer.extend(
        extensions.PrintReport(report_keys),
        trigger=(args.report_interval_iters, "iteration"),
    )

    trainer.extend(
        extensions.ProgressBar(update_interval=args.report_interval_iters))
    set_early_stop(trainer, args)

    if args.tensorboard_dir is not None and args.tensorboard_dir != "":
        trainer.extend(
            TensorboardLogger(SummaryWriter(args.tensorboard_dir),
                              att_reporter),
            trigger=(args.report_interval_iters, "iteration"),
        )
    # Run the training
    trainer.run()
    check_early_stop(trainer, args.epochs)
コード例 #3
0
    model = model_class(idim, odim_dict, args, languages)

    model_conf = args.outdir + "/model.json"
    with open(model_conf, "wb") as f:
        logging.info("writing a model config file to " + model_conf)
        f.write(
            json.dumps(
                (idim, odim_dict, vars(args)),
                indent=4,
                ensure_ascii=False,
                sort_keys=True,
            ).encode("utf_8"))

    model.cuda()
    if args.freeze_mods:
        model, model_params = freeze_modules(model, args.freeze_mods)
    else:
        model_params = model.parameters()

    logging.warning("Trainable parameters:")
    for name, parameter in model.named_parameters():
        if parameter.requires_grad:
            logging.warning(name)

    # Setup an optimizer
    if args.meta_train:
        logging.warning(
            f"Use Adam optimizer with lr={args.adam_lr}, beta0=0 for meta-training inner step"
        )
        optimizer = torch.optim.Adam(model_params,
                                     lr=args.adam_lr,