コード例 #1
0
    def forward(self, state, x):
        if state is None:
            h = [
                to_device(self, self.zero_state(x.size(0)))
                for n in six.moves.range(self.n_layers)
            ]
            state = {'h': h}
            if self.typ == "lstm":
                c = [
                    to_device(self, self.zero_state(x.size(0)))
                    for n in six.moves.range(self.n_layers)
                ]
                state = {'c': c, 'h': h}

        h = [None] * self.n_layers
        emb = self.embed(x)
        if self.typ == "lstm":
            c = [None] * self.n_layers
            h[0], c[0] = self.rnn[0](self.dropout[0](emb),
                                     (state['h'][0], state['c'][0]))
            for n in six.moves.range(1, self.n_layers):
                h[n], c[n] = self.rnn[n](self.dropout[n](h[n - 1]),
                                         (state['h'][n], state['c'][n]))
            state = {'c': c, 'h': h}
        else:
            h[0] = self.rnn[0](self.dropout[0](emb), state['h'][0])
            for n in six.moves.range(1, self.n_layers):
                h[n] = self.rnn[n](self.dropout[n](h[n - 1]), state['h'][n])
            state = {'h': h}
        y = self.lo(self.dropout[-1](h[-1]))
        return state, y
コード例 #2
0
    def forward(self, state, x):
        """Forward neural networks."""
        if state is None:
            h = [to_device(x, self.zero_state(x.size(0))) for n in range(self.n_layers)]
            state = {"h": h}
            if self.typ == "lstm":
                c = [
                    to_device(x, self.zero_state(x.size(0)))
                    for n in range(self.n_layers)
                ]
                state = {"c": c, "h": h}

        h = [None] * self.n_layers
        if self.embed_drop is not None:
            emb = self.embed_drop(self.embed(x))
        else:
            emb = self.embed(x)
        if self.typ == "lstm":
            c = [None] * self.n_layers
            h[0], c[0] = self.rnn[0](
                self.dropout[0](emb), (state["h"][0], state["c"][0])
            )
            for n in range(1, self.n_layers):
                h[n], c[n] = self.rnn[n](
                    self.dropout[n](h[n - 1]), (state["h"][n], state["c"][n])
                )
            state = {"c": c, "h": h}
        else:
            h[0] = self.rnn[0](self.dropout[0](emb), state["h"][0])
            for n in range(1, self.n_layers):
                h[n] = self.rnn[n](self.dropout[n](h[n - 1]), state["h"][n])
            state = {"h": h}
        y = self.lo(self.dropout[-1](h[-1]))
        return state, y