def test_sortagrad_trainable_with_batch_frames(module, num_encs): args = make_arg(num_encs=num_encs, sortagrad=1) idim = 2 odim = 2 dummy_json = make_dummy_json(4, [2, 3], [2, 3], idim=idim, odim=odim, num_inputs=num_encs) import espnet.nets.pytorch_backend.e2e_asr_mulenc as m batch_frames_in = 50 batch_frames_out = 50 batchset = make_batchset( dummy_json, batch_frames_in=batch_frames_in, batch_frames_out=batch_frames_out, shortest_first=True, ) for batch in batchset: i = 0 o = 0 for uttid, info in batch: i += int(info["input"][0]["shape"][0]) # based on the first input o += int(info["output"][0]["shape"][0]) assert i <= batch_frames_in assert o <= batch_frames_out model = m.E2E([2 for _ in range(num_encs)], 2, args) for batch in batchset: loss = model( *convert_batch(batch, module, idim=2, odim=2, num_inputs=num_encs)) loss.backward() # trainable with torch.no_grad(): in_data = [np.random.randn(100, 2) for _ in range(num_encs)] model.recognize(in_data, args, args.char_list)
def test_sortagrad_trainable_with_batch_bins(module, num_encs): args = make_arg(num_encs=num_encs, sortagrad=1) idim = 20 odim = 5 dummy_json = make_dummy_json(4, [10, 20], [10, 20], idim=idim, odim=odim, num_inputs=num_encs) import espnet.nets.pytorch_backend.e2e_asr_mulenc as m batch_elems = 2000 batchset = make_batchset(dummy_json, batch_bins=batch_elems, shortest_first=True) for batch in batchset: n = 0 for uttid, info in batch: ilen = int( info['input'][0]['shape'][0]) # based on the first input olen = int(info['output'][0]['shape'][0]) n += ilen * idim + olen * odim assert olen < batch_elems model = m.E2E([20 for _ in range(num_encs)], 5, args) for batch in batchset: loss = model(*convert_batch( batch, module, idim=20, odim=5, num_inputs=num_encs)) loss.backward() # trainable with torch.no_grad(), chainer.no_backprop_mode(): in_data = [np.random.randn(100, 20) for _ in range(num_encs)] model.recognize(in_data, args, args.char_list)
def test_gradient_noise_injection(module, num_encs): args = make_arg(num_encs=num_encs, grad_noise=True) args_org = make_arg(num_encs=num_encs) dummy_json = make_dummy_json(num_encs, [10, 20], [10, 20], idim=20, odim=5, num_inputs=num_encs) import espnet.nets.pytorch_backend.e2e_asr_mulenc as m batchset = make_batchset(dummy_json, 2, 2 ** 10, 2 ** 10, shortest_first=True) model = m.E2E([20 for _ in range(num_encs)], 5, args) model_org = m.E2E([20 for _ in range(num_encs)], 5, args_org) for batch in batchset: loss = model(*convert_batch(batch, module, idim=20, odim=5, num_inputs=num_encs)) loss_org = model_org(*convert_batch(batch, module, idim=20, odim=5, num_inputs=num_encs)) loss.backward() grad = [param.grad for param in model.parameters()][10] loss_org.backward() grad_org = [param.grad for param in model_org.parameters()][10] assert grad[0] != grad_org[0]
def test_gpu_trainable(module, num_encs): m = importlib.import_module(module) args = make_arg(num_encs=num_encs) model = m.E2E([2 for _ in range(num_encs)], 2, args) if "pytorch" in module: batch = prepare_inputs("pytorch", num_encs, is_cuda=True) model.cuda() loss = model(*batch) loss.backward() # trainable
def test_calculate_all_attentions(module, num_encs, atype): m = importlib.import_module(module) args = make_arg(num_encs=num_encs, atype=[atype for _ in range(num_encs)], han_type=atype) batch = prepare_inputs("pytorch", num_encs) model = m.E2E([40 for _ in range(num_encs)], 5, args) with chainer.no_backprop_mode(): att_ws = model.calculate_all_attentions(*batch) for i in range(num_encs): print(att_ws[i][0].shape) # att print(att_ws[num_encs][0].shape) # han
def test_multi_gpu_trainable(module, num_encs): m = importlib.import_module(module) ngpu = 2 device_ids = list(range(ngpu)) args = make_arg(num_encs=num_encs) model = m.E2E([2 for _ in range(num_encs)], 2, args) if "pytorch" in module: model = torch.nn.DataParallel(model, device_ids) batch = prepare_inputs("pytorch", num_encs, is_cuda=True) model.cuda() loss = 1.0 / ngpu * model(*batch) loss.backward(loss.new_ones(ngpu)) # trainable
def test_sortagrad_trainable(module, num_encs): args = make_arg(num_encs=num_encs, sortagrad=1) dummy_json = make_dummy_json(6, [10, 20], [10, 20], idim=20, odim=5, num_inputs=num_encs) import espnet.nets.pytorch_backend.e2e_asr_mulenc as m batchset = make_batchset(dummy_json, 2, 2 ** 10, 2 ** 10, shortest_first=True) model = m.E2E([20 for _ in range(num_encs)], 5, args) num_utts = 0 for batch in batchset: num_utts += len(batch) loss = model(*convert_batch(batch, module, idim=20, odim=5, num_inputs=num_encs)) loss.backward() # trainable assert num_utts == 6 with torch.no_grad(), chainer.no_backprop_mode(): in_data = [np.random.randn(50, 20) for _ in range(num_encs)] model.recognize(in_data, args, args.char_list)
def test_calculate_plot_attention_ctc(module, num_encs, model_dict): args = make_arg(num_encs=num_encs, **model_dict) m = importlib.import_module(module) model = m.E2E([2 for _ in range(num_encs)], 2, args) # test attention plot dummy_json = make_dummy_json(num_encs, [2, 3], [2, 3], idim=2, odim=2, num_inputs=num_encs) batchset = make_batchset(dummy_json, 2, 2**10, 2**10, shortest_first=True) att_ws = model.calculate_all_attentions(*convert_batch( batchset[0], "pytorch", idim=2, odim=2, num_inputs=num_encs)) from espnet.asr.asr_utils import PlotAttentionReport tmpdir = tempfile.mkdtemp() plot = PlotAttentionReport(model.calculate_all_attentions, batchset[0], tmpdir, None, None, None) for i in range(num_encs): # att-encoder att_w = plot.trim_attention_weight("utt_%d" % 0, att_ws[i][0]) plot._plot_and_save_attention(att_w, "{}/att{}.png".format(tmpdir, i)) # han att_w = plot.trim_attention_weight("utt_%d" % 0, att_ws[num_encs][0]) plot._plot_and_save_attention(att_w, "{}/han.png".format(tmpdir), han_mode=True) # test CTC plot ctc_probs = model.calculate_all_ctc_probs(*convert_batch( batchset[0], "pytorch", idim=2, odim=2, num_inputs=num_encs)) from espnet.asr.asr_utils import PlotCTCReport tmpdir = tempfile.mkdtemp() plot = PlotCTCReport(model.calculate_all_ctc_probs, batchset[0], tmpdir, None, None, None) if args.mtlalpha > 0: for i in range(num_encs): # ctc-encoder plot._plot_and_save_ctc(ctc_probs[i][0], "{}/ctc{}.png".format(tmpdir, i))
def test_torch_save_and_load(num_encs): m = importlib.import_module("espnet.nets.pytorch_backend.e2e_asr_mulenc") utils = importlib.import_module("espnet.asr.asr_utils") args = make_arg(num_encs=num_encs) model = m.E2E([2 for _ in range(num_encs)], 2, args) # initialize randomly for p in model.parameters(): p.data.uniform_() if not os.path.exists(".pytest_cache"): os.makedirs(".pytest_cache") tmppath = tempfile.mktemp() utils.torch_save(tmppath, model) p_saved = [p.data.numpy() for p in model.parameters()] # set constant value for p in model.parameters(): p.data.zero_() utils.torch_load(tmppath, model) for p1, p2 in zip(p_saved, model.parameters()): np.testing.assert_array_equal(p1, p2.data.numpy()) if os.path.exists(tmppath): os.remove(tmppath)