def __init__( self, vocab_size: int, encoder_output_size: int, attention_heads: int = 4, linear_units: int = 2048, num_blocks: int = 6, dropout_rate: float = 0.1, positional_dropout_rate: float = 0.1, self_attention_dropout_rate: float = 0.0, src_attention_dropout_rate: float = 0.0, input_layer: str = "embed", use_output_layer: bool = True, pos_enc_class=PositionalEncoding, normalize_before: bool = True, concat_after: bool = False, conv_wshare: int = 4, conv_kernel_length: Sequence[int] = (11, 11, 11, 11, 11, 11), conv_usebias: int = False, ): assert check_argument_types() if len(conv_kernel_length) != num_blocks: raise ValueError( "conv_kernel_length must have equal number of values to num_blocks: " f"{len(conv_kernel_length)} != {num_blocks}") super().__init__( vocab_size=vocab_size, encoder_output_size=encoder_output_size, dropout_rate=dropout_rate, positional_dropout_rate=positional_dropout_rate, input_layer=input_layer, use_output_layer=use_output_layer, pos_enc_class=pos_enc_class, normalize_before=normalize_before, ) attention_dim = encoder_output_size self.decoders = repeat( num_blocks, lambda lnum: DecoderLayer( attention_dim, LightweightConvolution2D( wshare=conv_wshare, n_feat=attention_dim, dropout_rate=self_attention_dropout_rate, kernel_size=conv_kernel_length[lnum], use_kernel_mask=True, use_bias=conv_usebias, ), MultiHeadedAttention(attention_heads, attention_dim, src_attention_dropout_rate), PositionwiseFeedForward(attention_dim, linear_units, dropout_rate), dropout_rate, normalize_before, concat_after, ), )
def __init__( self, idim, selfattention_layer_type="selfattn", attention_dim=256, attention_heads=4, conv_wshare=4, conv_kernel_length=11, conv_usebias=False, linear_units=2048, num_blocks=6, dropout_rate=0.1, positional_dropout_rate=0.1, attention_dropout_rate=0.0, input_layer="conv2d", pos_enc_class=PositionalEncoding, normalize_before=True, concat_after=False, positionwise_layer_type="linear", positionwise_conv_kernel_size=1, padding_idx=-1, ): """Construct an Encoder object.""" super(Encoder, self).__init__() self._register_load_state_dict_pre_hook(_pre_hook) if input_layer == "linear": self.embed = torch.nn.Sequential( torch.nn.Linear(idim, attention_dim), torch.nn.LayerNorm(attention_dim), torch.nn.Dropout(dropout_rate), torch.nn.ReLU(), pos_enc_class(attention_dim, positional_dropout_rate), ) elif input_layer == "conv2d": self.embed = Conv2dSubsampling(idim, attention_dim, dropout_rate) elif input_layer == "conv2d-scaled-pos-enc": self.embed = Conv2dSubsampling( idim, attention_dim, dropout_rate, pos_enc_class(attention_dim, positional_dropout_rate), ) elif input_layer == "conv2d6": self.embed = Conv2dSubsampling6(idim, attention_dim, dropout_rate) elif input_layer == "conv2d8": self.embed = Conv2dSubsampling8(idim, attention_dim, dropout_rate) elif input_layer == "vgg2l": self.embed = VGG2L(idim, attention_dim) elif input_layer == "embed": self.embed = torch.nn.Sequential( torch.nn.Embedding(idim, attention_dim, padding_idx=padding_idx), pos_enc_class(attention_dim, positional_dropout_rate), ) elif isinstance(input_layer, torch.nn.Module): self.embed = torch.nn.Sequential( input_layer, pos_enc_class(attention_dim, positional_dropout_rate), ) elif input_layer is None: self.embed = torch.nn.Sequential( pos_enc_class(attention_dim, positional_dropout_rate)) else: raise ValueError("unknown input_layer: " + input_layer) self.normalize_before = normalize_before positionwise_layer, positionwise_layer_args = self.get_positionwise_layer( positionwise_layer_type, attention_dim, linear_units, dropout_rate, positionwise_conv_kernel_size, ) if selfattention_layer_type == "selfattn": logging.info("encoder self-attention layer type = self-attention") self.encoders = repeat( num_blocks, lambda lnum: EncoderLayer( attention_dim, MultiHeadedAttention_wordscale( attention_heads, attention_dim, attention_dropout_rate ), positionwise_layer(*positionwise_layer_args), dropout_rate, normalize_before, concat_after, ), ) elif selfattention_layer_type == "lightconv": logging.info( "encoder self-attention layer type = lightweight convolution") self.encoders = repeat( num_blocks, lambda lnum: EncoderLayer( attention_dim, LightweightConvolution( conv_wshare, attention_dim, attention_dropout_rate, conv_kernel_length, lnum, use_bias=conv_usebias, ), positionwise_layer(*positionwise_layer_args), dropout_rate, normalize_before, concat_after, ), ) elif selfattention_layer_type == "lightconv2d": logging.info("encoder self-attention layer " "type = lightweight convolution 2-dimentional") self.encoders = repeat( num_blocks, lambda lnum: EncoderLayer( attention_dim, LightweightConvolution2D( conv_wshare, attention_dim, attention_dropout_rate, conv_kernel_length, lnum, use_bias=conv_usebias, ), positionwise_layer(*positionwise_layer_args), dropout_rate, normalize_before, concat_after, ), ) elif selfattention_layer_type == "dynamicconv": logging.info( "encoder self-attention layer type = dynamic convolution") self.encoders = repeat( num_blocks, lambda lnum: EncoderLayer( attention_dim, DynamicConvolution( conv_wshare, attention_dim, attention_dropout_rate, conv_kernel_length, lnum, use_bias=conv_usebias, ), positionwise_layer(*positionwise_layer_args), dropout_rate, normalize_before, concat_after, ), ) elif selfattention_layer_type == "dynamicconv2d": logging.info( "encoder self-attention layer type = dynamic convolution 2-dimentional" ) self.encoders = repeat( num_blocks, lambda lnum: EncoderLayer( attention_dim, DynamicConvolution2D( conv_wshare, attention_dim, attention_dropout_rate, conv_kernel_length, lnum, use_bias=conv_usebias, ), positionwise_layer(*positionwise_layer_args), dropout_rate, normalize_before, concat_after, ), ) if self.normalize_before: self.after_norm = LayerNorm(attention_dim)
def __init__( self, odim, selfattention_layer_type="selfattn", attention_dim=256, attention_heads=4, conv_wshare=4, conv_kernel_length=11, conv_usebias=False, linear_units=2048, num_blocks=6, dropout_rate=0.1, positional_dropout_rate=0.1, self_attention_dropout_rate=0.0, src_attention_dropout_rate=0.0, input_layer="embed", use_output_layer=True, pos_enc_class=PositionalEncoding, normalize_before=True, concat_after=False, ): """Construct an Decoder object.""" torch.nn.Module.__init__(self) self._register_load_state_dict_pre_hook(_pre_hook) if input_layer == "embed": self.embed = torch.nn.Sequential( torch.nn.Embedding(odim, attention_dim), pos_enc_class(attention_dim, positional_dropout_rate), ) elif input_layer == "linear": self.embed = torch.nn.Sequential( torch.nn.Linear(odim, attention_dim), torch.nn.LayerNorm(attention_dim), torch.nn.Dropout(dropout_rate), torch.nn.ReLU(), pos_enc_class(attention_dim, positional_dropout_rate), ) elif isinstance(input_layer, torch.nn.Module): self.embed = torch.nn.Sequential( input_layer, pos_enc_class(attention_dim, positional_dropout_rate)) else: raise NotImplementedError( "only `embed` or torch.nn.Module is supported.") self.normalize_before = normalize_before if selfattention_layer_type == "selfattn": logging.info("decoder self-attention layer type = self-attention") self.decoders = repeat( num_blocks, lambda lnum: DecoderLayer( attention_dim, MultiHeadedAttention(attention_heads, attention_dim, self_attention_dropout_rate), MultiHeadedAttention(attention_heads, attention_dim, src_attention_dropout_rate), PositionwiseFeedForward(attention_dim, linear_units, dropout_rate), PositionwiseFeedForward(attention_dim, linear_units, dropout_rate), dropout_rate, normalize_before, concat_after, ), ) elif selfattention_layer_type == "lightconv": logging.info( "decoder self-attention layer type = lightweight convolution") self.decoders = repeat( num_blocks, lambda lnum: DecoderLayer( attention_dim, LightweightConvolution( conv_wshare, attention_dim, self_attention_dropout_rate, conv_kernel_length, lnum, use_kernel_mask=True, use_bias=conv_usebias, ), MultiHeadedAttention(attention_heads, attention_dim, src_attention_dropout_rate), PositionwiseFeedForward(attention_dim, linear_units, dropout_rate), dropout_rate, normalize_before, concat_after, ), ) elif selfattention_layer_type == "lightconv2d": logging.info("decoder self-attention layer " "type = lightweight convolution 2-dimentional") self.decoders = repeat( num_blocks, lambda lnum: DecoderLayer( attention_dim, LightweightConvolution2D( conv_wshare, attention_dim, self_attention_dropout_rate, conv_kernel_length, lnum, use_kernel_mask=True, use_bias=conv_usebias, ), MultiHeadedAttention(attention_heads, attention_dim, src_attention_dropout_rate), PositionwiseFeedForward(attention_dim, linear_units, dropout_rate), dropout_rate, normalize_before, concat_after, ), ) elif selfattention_layer_type == "dynamicconv": logging.info( "decoder self-attention layer type = dynamic convolution") self.decoders = repeat( num_blocks, lambda lnum: DecoderLayer( attention_dim, DynamicConvolution( conv_wshare, attention_dim, self_attention_dropout_rate, conv_kernel_length, lnum, use_kernel_mask=True, use_bias=conv_usebias, ), MultiHeadedAttention(attention_heads, attention_dim, src_attention_dropout_rate), PositionwiseFeedForward(attention_dim, linear_units, dropout_rate), dropout_rate, normalize_before, concat_after, ), ) elif selfattention_layer_type == "dynamicconv2d": logging.info( "decoder self-attention layer type = dynamic convolution 2-dimentional" ) self.decoders = repeat( num_blocks, lambda lnum: DecoderLayer( attention_dim, DynamicConvolution2D( conv_wshare, attention_dim, self_attention_dropout_rate, conv_kernel_length, lnum, use_kernel_mask=True, use_bias=conv_usebias, ), MultiHeadedAttention(attention_heads, attention_dim, src_attention_dropout_rate), PositionwiseFeedForward(attention_dim, linear_units, dropout_rate), dropout_rate, normalize_before, concat_after, ), ) self.selfattention_layer_type = selfattention_layer_type if self.normalize_before: self.after_norm = LayerNorm(attention_dim) if use_output_layer: self.output_layer = torch.nn.Linear(attention_dim, odim) else: self.output_layer = None