コード例 #1
0
    def __init__(
        self,
        batch_size: int,
        key_file: str,
        drop_last: bool = False,
        utt2category_file: str = None,
    ):
        assert check_argument_types()
        assert batch_size > 0
        self.batch_size = batch_size
        self.key_file = key_file
        self.drop_last = drop_last

        # utt2shape:
        #    uttA <anything is o.k>
        #    uttB <anything is o.k>
        utt2any = read_2column_text(key_file)
        if len(utt2any) == 0:
            logging.warning(f"{key_file} is empty")
        # In this case the, the first column in only used
        keys = list(utt2any)
        if len(keys) == 0:
            raise RuntimeError(f"0 lines found: {key_file}")

        category2utt = {}
        if utt2category_file is not None:
            utt2category = read_2column_text(utt2category_file)
            if set(utt2category) != set(keys):
                raise RuntimeError(
                    f"keys are mismatched between {utt2category_file} != {key_file}"
                )
            for k, v in utt2category.items():
                category2utt.setdefault(v, []).append(k)
        else:
            category2utt["default_category"] = keys

        self.batch_list = []
        for d, v in category2utt.items():
            category_keys = v
            # Apply max(, 1) to avoid 0-batches
            N = max(len(category_keys) // batch_size, 1)
            if not self.drop_last:
                # Split keys evenly as possible as. Note that If N != 1,
                # the these batches always have size of batch_size at minimum.
                cur_batch_list = [
                    category_keys[i * len(keys) // N:(i + 1) * len(keys) // N]
                    for i in range(N)
                ]
            else:
                cur_batch_list = [
                    tuple(category_keys[i * batch_size:(i + 1) * batch_size])
                    for i in range(N)
                ]
            self.batch_list.extend(cur_batch_list)
コード例 #2
0
ファイル: test_read_text.py プロジェクト: espnet/espnet
def test_read_2column_text(tmp_path: Path):
    p = tmp_path / "dummy.scp"
    with p.open("w") as f:
        f.write("abc /some/path/a.wav\n")
        f.write("def /some/path/b.wav\n")
    d = read_2column_text(p)
    assert d == {"abc": "/some/path/a.wav", "def": "/some/path/b.wav"}
コード例 #3
0
    def __init__(self,
                 batch_size: int,
                 key_file: str,
                 drop_last: bool = False):
        assert check_argument_types()
        assert batch_size > 0
        self.batch_size = batch_size
        self.key_file = key_file
        self.drop_last = drop_last

        # utt2shape:
        #    uttA <anything is o.k>
        #    uttB <anything is o.k>
        utt2any = read_2column_text(key_file)
        if len(utt2any) == 0:
            logging.warning(f"{key_file} is empty")
        # In this case the, the first column in only used
        keys = list(utt2any)
        if len(keys) == 0:
            raise RuntimeError(f"0 lines found: {key_file}")

        # Apply max(, 1) to avoid 0-batches
        N = max(len(keys) // batch_size, 1)
        if not self.drop_last:
            # Split keys evenly as possible as. Note that If N != 1,
            # the these batches always have size of batch_size at minimum.
            self.batch_list = [
                keys[i * len(keys) // N:(i + 1) * len(keys) // N]
                for i in range(N)
            ]
        else:
            self.batch_list = [
                tuple(keys[i * batch_size:(i + 1) * batch_size])
                for i in range(N)
            ]
コード例 #4
0
 def __init__(
     self,
     fname,
     dtype=np.int16,
     always_2d: bool = False,
     normalize: bool = False,
 ):
     assert check_argument_types()
     self.fname = fname
     self.dtype = dtype
     self.always_2d = always_2d
     self.normalize = normalize
     self.data = read_2column_text(fname)
コード例 #5
0
    def __init__(
        self,
        batch_size: int,
        shape_files: Union[Tuple[str, ...], List[str]],
        fold_lengths: Sequence[int],
        min_batch_size: int = 1,
        sort_in_batch: str = "descending",
        sort_batch: str = "ascending",
        drop_last: bool = False,
        utt2category_file: str = None,
    ):
        assert check_argument_types()
        assert batch_size > 0
        if sort_batch != "ascending" and sort_batch != "descending":
            raise ValueError(
                f"sort_batch must be ascending or descending: {sort_batch}")
        if sort_in_batch != "descending" and sort_in_batch != "ascending":
            raise ValueError(
                f"sort_in_batch must be ascending or descending: {sort_in_batch}"
            )

        self.batch_size = batch_size
        self.shape_files = shape_files
        self.sort_in_batch = sort_in_batch
        self.sort_batch = sort_batch
        self.drop_last = drop_last

        # utt2shape: (Length, ...)
        #    uttA 100,...
        #    uttB 201,...
        utt2shapes = [
            load_num_sequence_text(s, loader_type="csv_int")
            for s in shape_files
        ]

        first_utt2shape = utt2shapes[0]
        for s, d in zip(shape_files, utt2shapes):
            if set(d) != set(first_utt2shape):
                raise RuntimeError(
                    f"keys are mismatched between {s} != {shape_files[0]}")

        # Sort samples in ascending order
        # (shape order should be like (Length, Dim))
        keys = sorted(first_utt2shape, key=lambda k: first_utt2shape[k][0])
        if len(keys) == 0:
            raise RuntimeError(f"0 lines found: {shape_files[0]}")

        category2utt = {}
        if utt2category_file is not None:
            utt2category = read_2column_text(utt2category_file)
            if set(utt2category) != set(first_utt2shape):
                raise RuntimeError("keys are mismatched between "
                                   f"{utt2category_file} != {shape_files[0]}")
            for k in keys:
                category2utt.setdefault(utt2category[k], []).append(k)
        else:
            category2utt["default_category"] = keys

        self.batch_list = []
        for d, v in category2utt.items():
            category_keys = v
            # Decide batch-sizes
            start = 0
            batch_sizes = []
            while True:
                k = category_keys[start]
                factor = max(
                    int(d[k][0] / m) for d, m in zip(utt2shapes, fold_lengths))
                bs = max(min_batch_size, int(batch_size / (1 + factor)))
                if self.drop_last and start + bs > len(category_keys):
                    # This if-block avoids 0-batches
                    if len(self.batch_list) > 0:
                        break

                bs = min(len(category_keys) - start, bs)
                batch_sizes.append(bs)
                start += bs
                if start >= len(category_keys):
                    break

            if len(batch_sizes) == 0:
                # Maybe we can't reach here
                raise RuntimeError("0 batches")

            # If the last batch-size is smaller than minimum batch_size,
            # the samples are redistributed to the other mini-batches
            if len(batch_sizes) > 1 and batch_sizes[-1] < min_batch_size:
                for i in range(batch_sizes.pop(-1)):
                    batch_sizes[-(i % len(batch_sizes)) - 2] += 1

            if not self.drop_last:
                # Bug check
                assert sum(batch_sizes) == len(
                    category_keys
                ), f"{sum(batch_sizes)} != {len(category_keys)}"

            # Set mini-batch
            cur_batch_list = []
            start = 0
            for bs in batch_sizes:
                assert len(category_keys) >= start + bs, "Bug"
                minibatch_keys = category_keys[start:start + bs]
                start += bs
                if sort_in_batch == "descending":
                    minibatch_keys.reverse()
                elif sort_in_batch == "ascending":
                    # Key are already sorted in ascending
                    pass
                else:
                    raise ValueError("sort_in_batch must be ascending or "
                                     f"descending: {sort_in_batch}")
                cur_batch_list.append(tuple(minibatch_keys))

            if sort_batch == "ascending":
                pass
            elif sort_batch == "descending":
                cur_batch_list.reverse()
            else:
                raise ValueError(
                    f"sort_batch must be ascending or descending: {sort_batch}"
                )
            self.batch_list.extend(cur_batch_list)
コード例 #6
0
def main():
    logfmt = "%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
    logging.basicConfig(level=logging.INFO, format=logfmt)
    logging.info(get_commandline_args())

    parser = argparse.ArgumentParser(
        description='Create waves list from "wav.scp"',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )
    parser.add_argument("scp")
    parser.add_argument("outdir")
    parser.add_argument(
        "--name",
        default="wav",
        help="Specify the prefix word of output file name "
        'such as "wav.scp"',
    )
    parser.add_argument("--segments", default=None)
    parser.add_argument(
        "--fs",
        type=humanfriendly_or_none,
        default=None,
        help="If the sampling rate specified, "
        "Change the sampling rate.",
    )
    parser.add_argument("--audio-format", default="wav")
    group = parser.add_mutually_exclusive_group()
    group.add_argument("--ref-channels", default=None, type=str2int_tuple)
    group.add_argument("--utt2ref-channels", default=None, type=str)
    args = parser.parse_args()

    out_num_samples = Path(args.outdir) / f"utt2num_samples"

    if args.ref_channels is not None:

        def utt2ref_channels(x) -> Tuple[int, ...]:
            return args.ref_channels

    elif args.utt2ref_channels is not None:
        utt2ref_channels_dict = read_2column_text(args.utt2ref_channels)

        def utt2ref_channels(x, d=utt2ref_channels_dict) -> Tuple[int, ...]:
            chs_str = d[x]
            return tuple(map(int, chs_str.split()))

    else:
        utt2ref_channels = None

    Path(args.outdir).mkdir(parents=True, exist_ok=True)
    out_wavscp = Path(args.outdir) / f"{args.name}.scp"
    if args.segments is not None:
        # Note: kaldiio supports only wav-pcm-int16le file.
        loader = kaldiio.load_scp_sequential(args.scp, segments=args.segments)
        if args.audio_format.endswith("ark"):
            fark = open(Path(args.outdir) / f"data_{args.name}.ark", "wb")
            fscp = out_wavscp.open("w")
        else:
            writer = SoundScpWriter(
                args.outdir,
                out_wavscp,
                format=args.audio_format,
            )

        with out_num_samples.open("w") as fnum_samples:
            for uttid, (rate, wave) in tqdm(loader):
                # wave: (Time,) or (Time, Nmic)
                if wave.ndim == 2 and utt2ref_channels is not None:
                    wave = wave[:, utt2ref_channels(uttid)]

                if args.fs is not None and args.fs != rate:
                    # FIXME(kamo): To use sox?
                    wave = resampy.resample(wave.astype(np.float64),
                                            rate,
                                            args.fs,
                                            axis=0)
                    wave = wave.astype(np.int16)
                    rate = args.fs
                if args.audio_format.endswith("ark"):
                    if "flac" in args.audio_format:
                        suf = "flac"
                    elif "wav" in args.audio_format:
                        suf = "wav"
                    else:
                        raise RuntimeError("wav.ark or flac")

                    # NOTE(kamo): Using extended ark format style here.
                    # This format is incompatible with Kaldi
                    kaldiio.save_ark(
                        fark,
                        {uttid: (wave, rate)},
                        scp=fscp,
                        append=True,
                        write_function=f"soundfile_{suf}",
                    )

                else:
                    writer[uttid] = rate, wave
                fnum_samples.write(f"{uttid} {len(wave)}\n")
    else:
        if args.audio_format.endswith("ark"):
            fark = open(Path(args.outdir) / f"data_{args.name}.ark", "wb")
        else:
            wavdir = Path(args.outdir) / f"data_{args.name}"
            wavdir.mkdir(parents=True, exist_ok=True)

        with Path(args.scp).open("r") as fscp, out_wavscp.open(
                "w") as fout, out_num_samples.open("w") as fnum_samples:
            for line in tqdm(fscp):
                uttid, wavpath = line.strip().split(None, 1)

                if wavpath.endswith("|"):
                    # Streaming input e.g. cat a.wav |
                    with kaldiio.open_like_kaldi(wavpath, "rb") as f:
                        with BytesIO(f.read()) as g:
                            wave, rate = soundfile.read(g, dtype=np.int16)
                            if wave.ndim == 2 and utt2ref_channels is not None:
                                wave = wave[:, utt2ref_channels(uttid)]

                        if args.fs is not None and args.fs != rate:
                            # FIXME(kamo): To use sox?
                            wave = resampy.resample(wave.astype(np.float64),
                                                    rate,
                                                    args.fs,
                                                    axis=0)
                            wave = wave.astype(np.int16)
                            rate = args.fs

                        if args.audio_format.endswith("ark"):
                            if "flac" in args.audio_format:
                                suf = "flac"
                            elif "wav" in args.audio_format:
                                suf = "wav"
                            else:
                                raise RuntimeError("wav.ark or flac")

                            # NOTE(kamo): Using extended ark format style here.
                            # This format is incompatible with Kaldi
                            kaldiio.save_ark(
                                fark,
                                {uttid: (wave, rate)},
                                scp=fout,
                                append=True,
                                write_function=f"soundfile_{suf}",
                            )
                        else:
                            owavpath = str(wavdir /
                                           f"{uttid}.{args.audio_format}")
                            soundfile.write(owavpath, wave, rate)
                            fout.write(f"{uttid} {owavpath}\n")
                else:
                    wave, rate = soundfile.read(wavpath, dtype=np.int16)
                    if wave.ndim == 2 and utt2ref_channels is not None:
                        wave = wave[:, utt2ref_channels(uttid)]
                        save_asis = False

                    elif args.audio_format.endswith("ark"):
                        save_asis = False

                    elif Path(wavpath).suffix == "." + args.audio_format and (
                            args.fs is None or args.fs == rate):
                        save_asis = True

                    else:
                        save_asis = False

                    if save_asis:
                        # Neither --segments nor --fs are specified and
                        # the line doesn't end with "|",
                        # i.e. not using unix-pipe,
                        # only in this case,
                        # just using the original file as is.
                        fout.write(f"{uttid} {wavpath}\n")
                    else:
                        if args.fs is not None and args.fs != rate:
                            # FIXME(kamo): To use sox?
                            wave = resampy.resample(wave.astype(np.float64),
                                                    rate,
                                                    args.fs,
                                                    axis=0)
                            wave = wave.astype(np.int16)
                            rate = args.fs

                        if args.audio_format.endswith("ark"):
                            if "flac" in args.audio_format:
                                suf = "flac"
                            elif "wav" in args.audio_format:
                                suf = "wav"
                            else:
                                raise RuntimeError("wav.ark or flac")

                            # NOTE(kamo): Using extended ark format style here.
                            # This format is not supported in Kaldi.
                            kaldiio.save_ark(
                                fark,
                                {uttid: (wave, rate)},
                                scp=fout,
                                append=True,
                                write_function=f"soundfile_{suf}",
                            )
                        else:
                            owavpath = str(wavdir /
                                           f"{uttid}.{args.audio_format}")
                            soundfile.write(owavpath, wave, rate)
                            fout.write(f"{uttid} {owavpath}\n")
                fnum_samples.write(f"{uttid} {len(wave)}\n")
コード例 #7
0
ファイル: npy_scp.py プロジェクト: sw005320/espnet-1
 def __init__(self, fname: Union[Path, str]):
     assert check_argument_types()
     self.fname = Path(fname)
     self.data = read_2column_text(fname)