コード例 #1
0
def spectral_features(filelist):
    """
    Given a list of files, retrieve them, analyse the first 100mS of each file and return
    a feature table.
    """
    number_of_files = len(filelist)
    number_of_features = 5
    features = np.zeros([number_of_files, number_of_features])
    sample_rate = 44100

    for file_index, url in enumerate(filelist):
        print url
        urllib.urlretrieve(url, filename='/tmp/localfile.wav')
        audio = MonoLoader(filename = '/tmp/localfile.wav', sampleRate = sample_rate)()
        zcr = ZeroCrossingRate()
        hamming_window = Windowing(type = 'hamming') # we need to window the frame to avoid FFT artifacts.
        spectrum = Spectrum()
        central_moments = CentralMoments()
        distributionshape = DistributionShape()
        spectral_centroid = Centroid()

        frame_size = int(round(0.100 * sample_rate))   # 100ms
        # Only do the first frame for now.
        # TODO we should generate values for the entire file, probably by averaging the features.
        current_frame = audio[0 : frame_size]
        features[file_index, 0] = zcr(current_frame)
        spectral_magnitude = spectrum(hamming_window(current_frame))
        centroid = spectral_centroid(spectral_magnitude)
        spectral_moments = distributionshape(central_moments(spectral_magnitude))
        features[file_index, 1] = centroid
        features[file_index, 2:5] = spectral_moments
    return features
コード例 #2
0
def file_to_hpcp(filename):
    audio = MonoLoader(filename=filename)()
    windowing = Windowing(type='blackmanharris62')
    spectrum = Spectrum()
    spectral_peaks = SpectralPeaks(orderBy='magnitude',
                                   magnitudeThreshold=0.001,
                                   maxPeaks=20,
                                   minFrequency=20,
                                   maxFrequency=8000)
    hpcp = HPCP(maxFrequency=8000)  # ,
    # normalized='unitSum') #VERIFICAR QUE ISTO E O Q FAZ SENTIDO FAZER

    spec_group = []
    hpcp_group = []

    for frame in FrameGenerator(audio, frameSize=1024, hopSize=512):
        windowed = windowing(frame)
        fft = spectrum(windowed)
        frequencies, magnitudes = spectral_peaks(fft)
        final_hpcp = hpcp(frequencies, magnitudes)

        spec_group.append(fft)
        hpcp_group.append(final_hpcp)

    mean_hpcp = np.mean(np.array(hpcp_group).T, axis=1)
    return mean_hpcp
コード例 #3
0
ファイル: libod.py プロジェクト: siyarvurucu/SAAT
def hfc(filename):
    audio = MonoLoader(filename=filename, sampleRate=44100)()
    features = []
    for frame in FrameGenerator(audio, frameSize = 1024, hopSize = 512):
        mag, phase =CartesianToPolar()(FFT()(Windowing(type='hann')(frame)))
        features.append(OnsetDetection(method='hfc')(mag, phase))
    return Onsets()(array([features]),[1])
コード例 #4
0
ファイル: libod.py プロジェクト: siyarvurucu/SAAT
def noveltycurve(filename):
    audio = MonoLoader(filename=filename, sampleRate=44100)()
    band_energy = []
    for frame in FrameGenerator(audio, frameSize = 1024, hopSize = 512):
        mag, phase, = CartesianToPolar()(FFT()(Windowing(type='hann')(frame)))
        band_energy.append(FrequencyBands()(mag))
    novelty = NoveltyCurve()(band_energy)
    return Onsets()(np.array([novelty]),[1])
コード例 #5
0
def feature_allframes(input_features, frame_indexer = None):

	audio = input_features['audio']
	beats = input_features['beats']
	
	# Initialise the algorithms
	w = Windowing(type = 'hann')
	spectrum = Spectrum() 		# FFT would return complex FFT, we only want magnitude
	melbands = MelBands(numberBands = NUMBER_BANDS)
	#~ mfcc = MFCC(numberBands = NUMBER_BANDS, numberCoefficients = NUMBER_COEFF)
	pool = Pool()
	
	if frame_indexer is None:
		frame_indexer = range(4,len(beats) - 1) # Exclude first frame, because it has no predecessor to calculate difference with
		
	# 13 MFCC coefficients
	# 40 Mel band energies
	#~ mfcc_coeffs = np.zeros((len(beats), NUMBER_COEFF))
	mfcc_bands = np.zeros((len(beats), NUMBER_BANDS))
	# 1 cosine distance value between every mfcc feature vector
	# 13 differences between MFCC coefficient of this frame and previous frame
	# 13 differences between MFCC coefficient of this frame and frame - 4	
	# 13 differences between the differences above	
	# Idem for mel band energies
	#~ mfcc_coeff_diff = np.zeros((len(beats), NUMBER_COEFF))
	mfcc_bands_diff = np.zeros((len(beats), NUMBER_BANDS * 4))
	
	# Step 1: Calculate framewise for all output frames
	# Calculate this for all frames where this frame, or its successor, is in the frame_indexer
	for i in [i for i in range(len(beats)) if (i in frame_indexer) or (i+1 in frame_indexer) 
		or (i-1 in frame_indexer) or (i-2 in frame_indexer) or (i-3 in frame_indexer)]:
		SAMPLE_RATE = 44100
		start_sample = int(beats[i] * SAMPLE_RATE)
		end_sample = int(beats[i+1] * SAMPLE_RATE) 
		#print start_sample, end_sample
		frame = audio[start_sample : end_sample if (start_sample - end_sample) % 2 == 0 else end_sample - 1]
		bands = melbands(spectrum(w(frame)))
		#~ bands, coeffs = mfcc(spectrum(w(frame)))
		#~ mfcc_coeffs[i] = coeffs
		mfcc_bands[i] = bands
	
	# Step 2: Calculate the cosine distance between the MFCC values
	for i in frame_indexer:
		# The norm of difference is usually very high around downbeat, because of melodic changes there!
		#~ mfcc_coeff_diff[i] = mfcc_coeffs[i+1] - mfcc_coeffs[i]
		mfcc_bands_diff[i][0*NUMBER_BANDS : 1*NUMBER_BANDS] = mfcc_bands[i+1] - mfcc_bands[i]
		mfcc_bands_diff[i][1*NUMBER_BANDS : 2*NUMBER_BANDS] = mfcc_bands[i+2] - mfcc_bands[i]
		mfcc_bands_diff[i][2*NUMBER_BANDS : 3*NUMBER_BANDS] = mfcc_bands[i+3] - mfcc_bands[i]
		mfcc_bands_diff[i][3*NUMBER_BANDS : 4*NUMBER_BANDS] = mfcc_bands[i] - mfcc_bands[i-1]
			
	# Include the MFCC coefficients as features
	result = mfcc_bands_diff[frame_indexer]
	#~ result = np.append(mfcc_coeff_diff[frame_indexer], mfcc_bands_diff[frame_indexer], axis=1)
	#~ print np.shape(result), np.shape(mfcc_coeff_diff), np.shape(mfcc_bands_diff)
	return preprocessing.scale(result)
コード例 #6
0
ファイル: features.py プロジェクト: siyarvurucu/SAAT
def spectralCentroid(audio,params):
    """ hop size, frame size, window type """
    hopSize, frameSize, wtype = params
    w = Windowing(type=wtype)
    spec = Spectrum()
    result = []
    centroid = ess.Centroid(range=int(44100/2))
    for frame in ess.FrameGenerator(audio, frameSize = frameSize, hopSize = hopSize):
        sf = spec(w(frame))
        result.append(centroid(sf))
    return np.asarray(result),hopSize
コード例 #7
0
ファイル: features.py プロジェクト: siyarvurucu/SAAT
def rms(audio,params):
    """ hop size, frame size, window type """
    hopSize, frameSize, wtype = params
    w = Windowing(type=wtype)
    spec = Spectrum()
    result = []
    RMS = ess.RMS()
    for frame in ess.FrameGenerator(audio, frameSize = frameSize, hopSize = hopSize):
        sf = spec(w(frame))
        result.append(RMS(sf))
    return np.asarray(result),hopSize
コード例 #8
0
    def __init__(self, input_blocksize=1024, input_stepsize=512):
        super(Essentia_Dissonance, self).__init__()

        self.input_blocksize = input_blocksize
        self.input_stepsize = min(input_stepsize, self.input_blocksize)
        self.windower = Windowing(type='blackmanharris62')
        self.spec_alg = None
        self.spec_peaks_alg = None
        self.dissonance_alg = Dissonance()

        self.dissonance = []
コード例 #9
0
    def calculateDownbeats(self, audio, bpm, phase):
        # Step 0: calculate the CSD (Complex Spectral Difference) features
        # and the associated onset detection function ON LOWPASSED SIGNAL
        spec = Spectrum(size=self.FRAME_SIZE)
        w = Windowing(type='hann')
        fft = FFT()
        c2p = CartesianToPolar()
        od_csd = OnsetDetection(method='complex')
        lowpass = LowPass(cutoffFrequency=1500)

        pool = Pool()

        # TODO test faster (numpy) way
        #audio = lowpass(audio)
        for frame in FrameGenerator(audio,
                                    frameSize=self.FRAME_SIZE,
                                    hopSize=self.HOP_SIZE):
            mag, ph = c2p(fft(w(frame)))
            pool.add('onsets.complex', od_csd(mag, ph))

        # Step 1: normalise the data using an adaptive mean threshold
        novelty_mean = self.adaptive_mean(pool['onsets.complex'], 16.0)

        # Step 2: half-wave rectify the result
        novelty_hwr = (pool['onsets.complex'] - novelty_mean).clip(min=0)

        # Step 7 (experimental): Determine downbeat locations as subsequence with highest complex spectral difference
        for i in range(4):
            phase_frames = (phase * 44100.0) / (512.0)
            frames = (
                np.round(
                    np.arange(phase_frames + i * self.numFramesPerBeat(bpm),
                              np.size(novelty_hwr),
                              4 * self.numFramesPerBeat(bpm))).astype('int')
            )[:
              -1]  # Discard last value to prevent reading beyond array (last value rounded up for example)
            pool.add('output.downbeat',
                     np.sum(novelty_hwr[frames]) / np.size(frames))

            plt.subplot(4, 1, i + 1)
            plt.plot(novelty_hwr)
            for f in frames:
                plt.axvline(x=f)
        print pool['output.downbeat']
        downbeatIndex = np.argmax(pool['output.downbeat'])
        plt.show()

        # experimental
        return 1.0 * self.beats[downbeatIndex::4]
コード例 #10
0
ファイル: loudness.py プロジェクト: tomsmallwood/dnb-autodj-3
def feature_allframes(input_features, frame_indexer = None):
	
	audio = input_features['audio']
	beats = input_features['beats']
	
	# Initialise the algorithms
	w = Windowing(type = 'hann')
	loudness = Loudness()
	
	if frame_indexer is None:
		frame_indexer = range(1,len(beats) - 1) # Exclude first frame, because it has no predecessor to calculate difference with
		
	# 1 loudness value by default
	loudness_values = np.zeros((len(beats), 1))
	# 1 difference value between loudness value cur and cur-1
	# 1 difference value between loudness value cur and cur-4
	# 1 difference value between differences above
	loudness_differences = np.zeros((len(beats), 9))
	
	# Step 1: Calculate framewise for all output frames
	# Calculate this for all frames where this frame, or its successor, is in the frame_indexer
	for i in [i for i in range(len(beats)) if (i in frame_indexer) or (i+1 in frame_indexer) 
		or (i-1 in frame_indexer) or (i-2 in frame_indexer) or (i-3 in frame_indexer) or (i-4 in frame_indexer)
		or (i-5 in frame_indexer) or (i-6 in frame_indexer) or (i-7 in frame_indexer) or (i-8 in frame_indexer)]:
		
		SAMPLE_RATE = 44100
		start_sample = int(beats[i] * SAMPLE_RATE)
		end_sample = int(beats[i+1] * SAMPLE_RATE) 
		#print start_sample, end_sample
		frame = audio[start_sample : end_sample if (start_sample - end_sample) % 2 == 0 else end_sample - 1]
		loudness_values[i] = loudness(w(frame))
		
	# Step 2: Calculate the cosine distance between the MFCC values
	for i in frame_indexer:
		loudness_differences[i][0] = (loudness_values[i] - loudness_values[i-1])
		loudness_differences[i][1] = (loudness_values[i+1] - loudness_values[i])
		loudness_differences[i][2] = (loudness_values[i+2] - loudness_values[i])
		loudness_differences[i][3] = (loudness_values[i+3] - loudness_values[i])
		loudness_differences[i][4] = (loudness_values[i+4] - loudness_values[i])
		loudness_differences[i][5] = (loudness_values[i+5] - loudness_values[i])
		loudness_differences[i][6] = (loudness_values[i+6] - loudness_values[i])
		loudness_differences[i][7] = (loudness_values[i+7] - loudness_values[i])
		loudness_differences[i][8] = (loudness_values[i-1] - loudness_values[i+1])
		
	# Include the raw values as absolute features
	result = loudness_differences[frame_indexer]
	
	#~ print np.shape(result), np.shape(loudness_values), np.shape(loudness_differences)
	return preprocessing.scale(result)
コード例 #11
0
    def __call__(self, audio, SR, sumThreshold=1e-5):
        self.__reset__()

        if audio.ndim > 1:
            audio = np.sum(audio, axis=1) / audio.ndim

        fcIndexArr = []
        self.hist = np.zeros(int(self.frameSize / 2 + 1))
        fft = FFT(size=self.frameSize)  # declare FFT function
        window = Windowing(size=self.frameSize,
                           type="hann")  # declare windowing function
        self.avgFrames = np.zeros(int(self.frameSize / 2) + 1)

        maxNrg = max([
            sum(abs(fft(window(frame)))**2)
            for frame in FrameGenerator(audio,
                                        frameSize=self.frameSize,
                                        hopSize=self.hopSize,
                                        startFromZero=True)
        ])

        for i, frame in enumerate(
                FrameGenerator(audio,
                               frameSize=self.frameSize,
                               hopSize=self.hopSize,
                               startFromZero=True)):

            frame = window(frame)  # apply window to the frame
            frameFft = abs(fft(frame))
            nrg = sum(frameFft**2)

            if nrg >= 0.1 * maxNrg:
                for j in reversed(range(len(frameFft))):
                    if sum(frameFft[j:] / j) >= sumThreshold:
                        fcIndexArr.append(j)
                        self.hist[j] += nrg
                        break
                self.avgFrames = self.avgFrames + frameFft

        if len(fcIndexArr) == 0:
            fcIndexArr.append(int(self.frameSize / 2) + 1)
            self.hist[int(self.frameSize / 2)] += 1

        self.avgFrames /= (i + 1)
        self.mostLikelyBin, conf, binary = self.__computeMeanFc(
            fcIndexArr, np.arange(int(self.frameSize / 2) + 2), hist=self.hist)

        return self.mostLikelyBin * SR / self.frameSize, conf, binary
コード例 #12
0
def mel40_analyzer():
    window = Windowing(size=256, type='blackmanharris62')
    spectrum = Spectrum(size=256)
    mel = MelBands(
            inputSize=129,
            numberBands=40,
            lowFrequencyBound=27.5,
            highFrequencyBound=8000.0,
            sampleRate=16000.0)
    def analyzer(samples):
        feats = []
        for frame in FrameGenerator(samples, 256, 160):
            frame_feats = mel(spectrum(window(frame)))
            frame_feats = np.log(frame_feats + 1e-16)
            feats.append(frame_feats)
        return np.array(feats)
    return analyzer
コード例 #13
0
def rms_centroids(filename, frameSize=1024, hopSize=512, sampleRate=44100):
    # load our audio into an array
    audio = MonoLoader(filename=filename, sampleRate=44100)()

    # create the pool and the necessary algorithms
    w = Windowing()
    spec = Spectrum()
    rms = RMS()
    centroid = Centroid(range=int(sampleRate / 2))
    cs = []
    rmss = []
    # compute the centroid for all frames in our audio and add it to the pool
    for frame in FrameGenerator(audio, frameSize=frameSize, hopSize=hopSize):
        sf = spec(w(frame))
        cs.append(centroid(sf))
        rmss.append(rms(sf))
    return np.array(rmss), np.array(cs)
コード例 #14
0
ファイル: extract_feats.py プロジェクト: gary109/ddc
def create_analyzers(fs=44100.0,
                     nhop=512,
                     nffts=[1024, 2048, 4096],
                     mel_nband=80,
                     mel_freqlo=27.5,
                     mel_freqhi=16000.0):
    analyzers = []
    for nfft in nffts:
        window = Windowing(size=nfft, type='blackmanharris62')
        spectrum = Spectrum(size=nfft)
        mel = MelBands(inputSize=(nfft // 2) + 1,
                       numberBands=mel_nband,
                       lowFrequencyBound=mel_freqlo,
                       highFrequencyBound=mel_freqhi,
                       sampleRate=fs)
        analyzers.append((window, spectrum, mel))
    return analyzers
コード例 #15
0
def hcdf(filename):
    audio = MonoLoader(filename=filename)()
    windowing = Windowing(type='hann')

    for frame in FrameGenerator(audio, frameSize=32768, hopSize=4096):
        windowed = windowing(frame)
        print('window', windowed)
        # ConstantQ transform
        # constant_q = ConstantQ(binsPerOctave=36, minFrequency=110, maxFrequency=3520, sampleRate=11025)
        # kk = constant_q(windowed)
        # 12 bin tunned Chromagram
        # pedirle al ruso que lo ponga
        chroma = Chromagram(numberBins=12,
                            binsPerOctave=36,
                            minFrequency=110,
                            windowType='hann')  # maxFrequency=3520

        pitch_class_vectors = chroma(frame)
        print('pitch_class_vectors', pitch_class_vectors)
コード例 #16
0
ファイル: libod.py プロジェクト: siyarvurucu/SAAT
def ninos(filename,gamma=0.94):
    """
    reference: Mounir, M., Karsmakers, P., & Van Waterschoot, T. (2016). Guitar note onset detection based on a spectral sparsity measure. 
    European Signal Processing Conference. https://doi.org/10.1109/EUSIPCO.2016.7760394
    """
    N = 2048
    hopSize = int(N/10)
    J = int(N*gamma/2)
    audio = MonoLoader(filename=filename, sampleRate=44100)()
    mag = []
    for frame in FrameGenerator(audio, frameSize = N, hopSize = hopSize):
        m = CartesianToPolar()(FFT()(Windowing(type='hann')(frame)))[0]
        m = np.asarray(m)
        idx = np.argsort(m)[::-1][:J]
        mag.append(m[idx])
    mag = np.asarray(mag)
    x2 = mag*mag
    inos=np.sum(x2,axis=1)/(np.sum(x2*x2,axis=1)**(0.25))
    ninos = inos/(J**(0.25))
    return  OnsetPeakPickingProcessor(threshold=0.03,fps=44100/hopSize)(ninos)                          
コード例 #17
0
ファイル: MusipMain.py プロジェクト: Musip/Musip1
def shared_main(source, dest, display_result):
    source_audio = _loader(source)
    destination_audio = _loader(dest)

    source_frame = FrameGenerator(source_audio, frameSize=2048, hopSize=512)
    destination_frame = FrameGenerator(destination_audio,
                                       frameSize=2048,
                                       hopSize=512)

    window = Windowing(type='hann')  # window function
    spectrum = Spectrum()  # spectrum function
    pitch_yin_fft = PitchYinFFT()  # pitch extractor
    pitch_saliennce = PitchSalience()
    loudness = Loudness()

    # draw_plot(source_frame, window, spectrum, pitch_yin_fft)
    min_cost, match_result = compare(source_frame, destination_frame, window, \
                                  spectrum, pitch_yin_fft, 5, 1, 1, display_result, loudness)

    return min_cost, match_result
コード例 #18
0
    def run(self, audio):

        # Calculate the melflux onset detection function

        pool = Pool()
        w = Windowing(type='hann')
        fft = np.fft.fft
        od_flux = OnsetDetection(method='melflux')

        for frame in FrameGenerator(audio,
                                    frameSize=self.FRAME_SIZE,
                                    hopSize=self.HOP_SIZE):
            pool.add('audio.windowed_frames', w(frame))

        fft_result = fft(pool['audio.windowed_frames']).astype('complex64')
        fft_result_mag = np.absolute(fft_result)
        fft_result_ang = np.angle(fft_result)
        self.fft_mag_1024_512 = fft_result_mag
        self.fft_phase_1024_512 = fft_result_ang

        for mag, phase in zip(fft_result_mag, fft_result_ang):
            pool.add('onsets.complex', od_flux(mag, phase))

        odf = pool['onsets.complex']

        # Given the ODF, calculate the tempo and the phase
        tempo, tempo_curve, phase, phase_curve = BeatTracker.get_tempo_and_phase_from_odf(
            odf, self.HOP_SIZE)

        # Calculate the beat annotations
        spb = 60. / tempo  #seconds per beat
        beats = (np.arange(phase,
                           (np.size(audio) / self.SAMPLE_RATE) - spb + phase,
                           spb).astype('single'))

        # Store all the results
        self.bpm = tempo
        self.phase = phase
        self.beats = beats
        self.onset_curve = BeatTracker.hwr(pool['onsets.complex'])
コード例 #19
0
def feature_allframes(audio, beats, frame_indexer = None):
	
	# Initialise the algorithms
	w = Windowing(type = 'blackmanharris92')
	spectrum = Spectrum()
	specPeaks = SpectralPeaks()
	hpcp = HPCP()
	
	if frame_indexer is None:
		frame_indexer = range(1,len(beats) - 1) # Exclude first frame, because it has no predecessor to calculate difference with
		
	# 12 chromagram values by default
	chroma_values = np.zeros((len(beats), 12))
	# Difference between chroma vectors
	chroma_differences = np.zeros((len(beats), 3))
	
	# Step 1: Calculate framewise for all output frames
	# Calculate this for all frames where this frame, or its successor, is in the frame_indexer
	for i in [i for i in range(len(beats)) if (i in frame_indexer) or (i+1 in frame_indexer) or (i+1 in frame_indexer)]:
		
		SAMPLE_RATE = 44100
		start_sample = int(beats[i] * SAMPLE_RATE)
		end_sample = int(beats[i+1] * SAMPLE_RATE) 
		#print start_sample, end_sample
		frame = audio[start_sample : (end_sample if (start_sample - end_sample) % 2 == 0 else end_sample - 1)]
		freq, mag = specPeaks(spectrum(w(frame)))
		chroma_values[i] = hpcp(freq, mag)
	
	# Step 2: Calculate the cosine distance between the MFCC values
	for i in frame_indexer:
		chroma_differences[i][0] = np.linalg.norm(chroma_values[i] - chroma_values[i-1])
		chroma_differences[i][1] = np.linalg.norm(chroma_values[i] - chroma_values[i+1])
		chroma_differences[i][2] = np.linalg.norm(chroma_values[i-1] - chroma_values[i+1])
		
	# Include the raw values as absolute features
	result = np.append(chroma_values[frame_indexer], chroma_differences[frame_indexer], axis=1)
	
	#~ print np.shape(result), np.shape(chroma_values), np.shape(chroma_differences)
	return preprocessing.scale(result)
コード例 #20
0
    def f_essentia_extract(Audio):
        ##    METODOS DE LIBRERIA QUE DETECTAN DONDE OCURRE CADA NOTA RESPECTO AL TIEMPO

        od2 = OnsetDetection(method='complex')
        # Let's also get the other algorithms we will need, and a pool to store the results
        w = Windowing(type='hann')
        fft = FFT()  # this gives us a complex FFT
        c2p = CartesianToPolar(
        )  # and this turns it into a pair (magnitude, phase)
        pool = essentia.Pool()

        # Computing onset detection functions.
        for frame in FrameGenerator(Audio, frameSize=1024, hopSize=512):
            mag, phase, = c2p(fft(w(frame)))
            pool.add('features.complex', od2(mag, phase))

        ## inicio de cada "nota"
        onsets = Onsets()
        tiempos_detectados_essentia = onsets(
            essentia.array([pool['features.complex']]), [1])
        #print(tiempos_detectados_essentia)
        return tiempos_detectados_essentia
コード例 #21
0
def detectBW(audio: list,
             SR: float,
             frame_size=256,
             hop_size=128,
             floor_db=-90,
             oversample_f=1):

    frame_size *= oversample_f  # if an oversample factor is desired, apply it

    fc_index_arr = []
    fft = FFT(size=frame_size)  # declare FFT function
    window = Windowing(size=frame_size,
                       type="hann")  # declare windowing function

    for frame in FrameGenerator(audio,
                                frameSize=frame_size,
                                hopSize=hop_size,
                                startFromZero=True):

        frame_fft = abs(fft(window(frame)))
        frame_fft_db = 20 * np.log10(
            frame_fft + eps)  # calculate frame fft values in db
        # compute the linear interpolation between the values of the maxima of the spectrum
        interp_frame = compute_spectral_envelope(frame_fft_db, "linear")
        interp_frame = modify_floor(interp_frame, floor_db, log=True)
        fc_index = compute_fc(interp_frame)

        if energy_verification(frame_fft, fc_index):
            fc_index_arr.append(fc_index)

    if len(fc_index_arr) == 0:
        fc_index_arr = [frame_size]

    fc_bin, conf, binary = compute_mean_fc(fc_index_arr,
                                           np.arange(len(frame_fft)), SR)

    # print("mean_fc: ", fc_bin*SR/frame_size ," conf: ", conf ," binary_result: ", binary)

    return fc_bin * SR / frame_size, conf, binary
コード例 #22
0
def feature_allframes(audio, beats, frame_indexer = None):
	
	# Initialise the algorithms
	w = Windowing(type = 'hann')
	loudness = Loudness()
	
	if frame_indexer is None:
		frame_indexer = range(1,len(beats) - 1) # Exclude first frame, because it has no predecessor to calculate difference with
		
	# 1 loudness value by default
	loudness_values = np.zeros((len(beats), 1))
	# 1 difference value between loudness value cur and cur-1
	# 1 difference value between loudness value cur and cur-4
	# 1 difference value between differences above
	loudness_feature_vector = np.zeros((len(beats), 4))
	
	# Step 1: Calculate framewise for all output frames
	# Calculate this for all frames where this frame, or its successor, is in the frame_indexer
	for i in [i for i in range(len(beats)) if (i in frame_indexer) or (i-1 in frame_indexer) or (i-2 in frame_indexer) or (i-3 in frame_indexer)]:
		
		SAMPLE_RATE = 44100
		start_sample = int(beats[i] * SAMPLE_RATE)
		end_sample = int(beats[i+1] * SAMPLE_RATE) 
		#print start_sample, end_sample
		frame = audio[start_sample : end_sample if (start_sample - end_sample) % 2 == 0 else end_sample - 1]
		loudness_values[i] = loudness(w(frame))
		
	loudness_values = preprocessing.scale(loudness_values)
	# Step 2: construct feature vector
	for i in frame_indexer:
		loudness_feature_vector[i] = np.reshape(loudness_values[i:i+4], (4,))
		
	# Include the raw values as absolute features
	result = loudness_feature_vector[frame_indexer]
	
	#~ print np.shape(result), np.shape(loudness_values), np.shape(loudness_differences)
	return result
コード例 #23
0
ファイル: stroke_cleaning.py プロジェクト: jfraj/soundeval
    def extract_features_from_frame(self, frame):
        """ Return dictionary of features for the given frame."""
        centroid = Centroid(range=22050)
        hamming_window = Windowing(type='hamming')
        zcr = ess.ZeroCrossingRate()
        spectrum = ess.Spectrum()
        central_moments = ess.CentralMoments()
        # Spectrum can only compute FFT of array of even size (don't know why)
        if len(frame) % 2 == 1:
            frame = frame[:-1]
        spectral_magnitude = spectrum(hamming_window(frame))
        feat_dic = {'zrc':zcr(frame), 'centroid':centroid(spectral_magnitude)}

        # Central moments
        central_moments = ess.CentralMoments()
        central_moms = central_moments(hamming_window(frame))
        for idx, icm in enumerate(central_moms):
            feat_dic['cm{}'.format(idx)] = icm

        # Distribution shape
        distributionshape = ess.DistributionShape()
        for idx, ism in enumerate(distributionshape(central_moms)):
            feat_dic['sm{}'.format(idx)] = ism
        return feat_dic
コード例 #24
0
beats = beatTracker.getBeats()
bpm = beatTracker.getBpm()
phase = beatTracker.getPhase()
beats = beats - phase
print 'Bpm: ', bpm
print 'Frame size in samples: ', 44100 * (60.0 / bpm)

# Followed approach from Foote

# Adjust the frame size to the length of a beat, to extract beat-aligned information (zelf-uitgevonden)
FRAME_SIZE = int(44100 * (60.0 / bpm))
HOP_SIZE = FRAME_SIZE / 2
frames_per_second = (44100.0 / FRAME_SIZE) * (FRAME_SIZE / HOP_SIZE)
beats = beats * frames_per_second
spec = Spectrum(size=FRAME_SIZE - FRAME_SIZE % 2)
w = Windowing(type='hann')
spectrum = Spectrum()  # FFT would return complex FFT, we only want magnitude
mfcc = MFCC()
pool = Pool()

# Step 0: align audio with phase

beats = beats - 0.5

start_sample = int((phase) * (44100.0 * 60 / bpm))

# Step 1: Calculate framewise MFCC
for frame in FrameGenerator(audio[start_sample:],
                            frameSize=FRAME_SIZE,
                            hopSize=HOP_SIZE):
    mfcc_bands, mfcc_coeffs = mfcc(
コード例 #25
0
    def run(self, audio):

        # TODO put this in some util class

        # Step 0: calculate the CSD (Complex Spectral Difference) features
        # and the associated onset detection function
        spec = Spectrum(size=self.FRAME_SIZE)
        w = Windowing(type='hann')
        fft = FFT()
        c2p = CartesianToPolar()
        od_csd = OnsetDetection(method='complex')

        pool = Pool()

        # TODO test faster (numpy) way
        for frame in FrameGenerator(audio,
                                    frameSize=self.FRAME_SIZE,
                                    hopSize=self.HOP_SIZE):
            mag, phase = c2p(fft(w(frame)))
            pool.add('onsets.complex', od_csd(mag, phase))

        # Step 1: normalise the data using an adaptive mean threshold
        novelty_mean = self.adaptive_mean(pool['onsets.complex'], 16.0)

        # Step 2: half-wave rectify the result
        novelty_hwr = (pool['onsets.complex'] - novelty_mean).clip(min=0)

        # Step 3: then calculate the autocorrelation of this signal
        novelty_autocorr = self.autocorr(novelty_hwr)

        # Step 4: Sum over constant intervals to detect most likely BPM
        valid_bpms = np.arange(self.minBpm, self.maxBpm, self.stepBpm)
        for bpm in valid_bpms:
            frames = (
                np.round(
                    np.arange(0, np.size(novelty_autocorr),
                              self.numFramesPerBeat(bpm))).astype('int')
            )[:
              -1]  # Discard last value to prevent reading beyond array (last value rounded up for example)
            pool.add('output.bpm',
                     np.sum(novelty_autocorr[frames]) / np.size(frames))
        bpm = valid_bpms[np.argmax(pool['output.bpm'])]

        # Step 5: Calculate phase information
        valid_phases = np.arange(0.0, 60.0 / bpm,
                                 0.001)  # Valid phases in SECONDS
        for phase in valid_phases:
            # Convert phase from seconds to frames
            phase_frames = (phase * 44100.0) / (512.0)
            frames = (
                np.round(
                    np.arange(phase_frames, np.size(novelty_hwr),
                              self.numFramesPerBeat(bpm))).astype('int')
            )[:
              -1]  # Discard last value to prevent reading beyond array (last value rounded up for example)
            pool.add('output.phase',
                     np.sum(novelty_hwr[frames]) / np.size(frames))
        phase = valid_phases[np.argmax(pool['output.phase'])]
        print 'PHASE', phase
        # Step 6: Determine the beat locations
        spb = 60. / bpm  #seconds per beat
        beats = (np.arange(phase, (np.size(audio) / 44100) - spb + phase,
                           spb).astype('single'))

        # Store all the results
        self.bpm = bpm
        self.phase = phase
        self.beats = beats

        self.downbeats = self.calculateDownbeats(audio, bpm, phase)
コード例 #26
0
ファイル: BeatTracker.py プロジェクト: prabhatse/auto-dj
    def run(self, audio):
        def numFramesPerBeat(bpm):
            return (60.0 * self.SAMPLE_RATE) / (self.HOP_SIZE * bpm)

        def autocorr(x):
            result = np.correlate(x, x, mode='full')
            return result[result.size / 2:]

        def adaptive_mean(x, N):
            return np.convolve(x, [1.0] * int(N), mode='same') / N

        # Step 0: calculate the CSD (Complex Spectral Difference) features
        # and the associated onset detection function
        spec = Spectrum(size=self.FRAME_SIZE)
        w = Windowing(type='hann')
        fft = np.fft.fft
        c2p = CartesianToPolar()
        od_csd = OnsetDetection(method='melflux')

        pool = Pool()

        for frame in FrameGenerator(audio,
                                    frameSize=self.FRAME_SIZE,
                                    hopSize=self.HOP_SIZE):
            pool.add('audio.windowed_frames', w(frame))

        fft_result = fft(pool['audio.windowed_frames']).astype('complex64')
        fft_result_mag = np.absolute(fft_result)
        fft_result_ang = np.angle(fft_result)

        for mag, phase in zip(fft_result_mag, fft_result_ang):
            pool.add('onsets.complex', od_csd(mag, phase))

        # Step 1: normalise the data using an adaptive mean threshold
        novelty_mean = adaptive_mean(pool['onsets.complex'], 16.0)

        # Step 2: half-wave rectify the result
        novelty_hwr = (pool['onsets.complex'] - novelty_mean).clip(min=0)

        # Step 3: then calculate the autocorrelation of this signal
        novelty_autocorr = autocorr(novelty_hwr)

        # Step 4: Sum over constant intervals to detect most likely BPM
        valid_bpms = np.arange(self.minBpm, self.maxBpm, self.stepBpm)
        for bpm in valid_bpms:
            frames = (
                np.round(
                    np.arange(0, np.size(novelty_autocorr),
                              numFramesPerBeat(bpm))).astype('int')
            )[:
              -1]  # Discard last value to prevent reading beyond array (last value rounded up for example)
            pool.add('output.bpm',
                     np.sum(novelty_autocorr[frames]) / np.size(frames))
        bpm = valid_bpms[np.argmax(pool['output.bpm'])]

        # Step 5: Calculate phase information
        valid_phases = np.arange(0.0, 60.0 / bpm,
                                 0.001)  # Valid phases in SECONDS
        for phase in valid_phases:
            # Convert phase from seconds to frames
            phase_frames = (phase * 44100.0) / (512.0)
            frames = (
                np.round(
                    np.arange(phase_frames, np.size(novelty_hwr),
                              numFramesPerBeat(bpm))).astype('int')
            )[:
              -1]  # Discard last value to prevent reading beyond array (last value rounded up for example)
            pool.add('output.phase',
                     np.sum(novelty_hwr[frames]) / np.size(frames))
        phase = valid_phases[np.argmax(pool['output.phase'])]

        # Step 6: Determine the beat locations
        spb = 60. / bpm  #seconds per beat
        beats = (np.arange(phase, (np.size(audio) / 44100) - spb + phase,
                           spb).astype('single'))

        # Store all the results
        self.bpm = bpm
        self.phase = phase
        self.beats = beats
コード例 #27
0
import time
import essentia
from essentia.standard import Extractor, MonoLoader, Trimmer, Mean, FrameGenerator, Spectrum, SpectralPeaks, Dissonance, BarkBands, Windowing, \
 ZeroCrossingRate, OddToEvenHarmonicEnergyRatio, EnergyBand, MetadataReader, OnsetDetection, Onsets, CartesianToPolar, FFT, MFCC, SingleGaussian
from build_map import build_map

sampleRate = 44100
frameSize = 2048
hopSize = 1024
windowType = "hann"

mean = Mean()

keyDetector = essentia.standard.Key(pcpSize=12)
spectrum = Spectrum()
window = Windowing(size=frameSize, zeroPadding=0, type=windowType)
mfcc = MFCC()
gaussian = SingleGaussian()
od = OnsetDetection(method='hfc')
fft = FFT()  # this gives us a complex FFT
c2p = CartesianToPolar()  # and this turns it into a pair (magnitude, phase)
onsets = Onsets(alpha=1)

# dissonance
spectralPeaks = SpectralPeaks(sampleRate=sampleRate, orderBy='frequency')
dissonance = Dissonance()

# barkbands
barkbands = BarkBands(sampleRate=sampleRate)

# zero crossing rate
コード例 #28
0
 def test_windowing(self):
     Windowing(type='hann')
コード例 #29
0
def feature_allframes(audio, beats, frame_indexer = None):
	
	# Initialise the algorithms	
	FRAME_SIZE = 1024
	HOP_SIZE = 512
	spec = Spectrum(size = FRAME_SIZE)
	w = Windowing(type = 'hann')
	fft = np.fft.fft

	od_csd = OnsetDetection(method = 'complex')
	od_hfc = OnsetDetection(method = 'flux')

	pool = Pool()
	
	# Calculate onset detection curve on audio
	for frame in FrameGenerator(audio, frameSize = FRAME_SIZE, hopSize = HOP_SIZE):
		pool.add('windowed_frames', w(frame))
		
	fft_result = fft(pool['windowed_frames']).astype('complex64')
	fft_result_mag = np.absolute(fft_result)
	fft_result_ang = np.angle(fft_result)

	for mag,phase in zip(fft_result_mag, fft_result_ang):
		pool.add('onsets.flux', od_hfc(mag, phase))
	
	# Normalize and half-rectify onset detection curve
	def adaptive_mean(x, N):
		return np.convolve(x, [1.0]*int(N), mode='same')/N
		
	novelty_mean = adaptive_mean(pool['onsets.flux'], 16.0)
	novelty_hwr = (pool['onsets.flux'] - novelty_mean).clip(min=0)
	novelty_hwr = novelty_hwr / np.average(novelty_hwr)
	
	# For every frame in frame_indexer, 
	if frame_indexer is None:
		frame_indexer = list(range(4,len(beats) - 1)) # Exclude first frame, because it has no predecessor to calculate difference with
		
	# Feature: correlation between current frame onset detection f and of previous frame
	# Feature: correlation between current frame onset detection f and of next frame
	# Feature: diff between correlation between current frame onset detection f and corr cur and next
	onset_integrals = np.zeros((2 * len(beats), 1))
	frame_i = (np.array(beats) * 44100.0/ HOP_SIZE).astype('int')
	onset_correlations = np.zeros((len(beats), 21))
	
	for i in [i for i in range(len(beats)) if (i in frame_indexer) or (i+1 in frame_indexer)
		or (i-1 in frame_indexer) or (i-2 in frame_indexer) or (i-3 in frame_indexer)
		or (i-4 in frame_indexer) or (i-5 in frame_indexer) or (i-6 in frame_indexer) or (i-7 in frame_indexer)]:
		
		half_i = int((frame_i[i] + frame_i[i+1]) / 2)
		cur_frame_1st_half = novelty_hwr[frame_i[i] : half_i]
		cur_frame_2nd_half = novelty_hwr[half_i : frame_i[i+1]]
		onset_integrals[2*i] = np.sum(cur_frame_1st_half)
		onset_integrals[2*i + 1] = np.sum(cur_frame_2nd_half)
	
	# Step 2: Calculate the cosine distance between the MFCC values
	for i in frame_indexer:
		
		onset_correlations[i][0] = max(np.correlate(novelty_hwr[frame_i[i-1] : frame_i[i]], novelty_hwr[frame_i[i] : frame_i[i+1]], mode='valid')) # Only 1 value
		onset_correlations[i][1] = max(np.correlate(novelty_hwr[frame_i[i] : frame_i[i+1]], novelty_hwr[frame_i[i+1] : frame_i[i+2]], mode='valid')) # Only 1 value
		onset_correlations[i][2] = max(np.correlate(novelty_hwr[frame_i[i] : frame_i[i+1]], novelty_hwr[frame_i[i+2] : frame_i[i+3]], mode='valid')) # Only 1 value
		onset_correlations[i][3] = max(np.correlate(novelty_hwr[frame_i[i] : frame_i[i+1]], novelty_hwr[frame_i[i+3] : frame_i[i+4]], mode='valid')) # Only 1 value
		
		# Difference in integrals of novelty curve between frames
		# Quantifies the difference in number and prominence of onsets in this frame
		onset_correlations[i][4] = onset_integrals[2*i] - onset_integrals[2*i-1]
		onset_correlations[i][5] = onset_integrals[2*i+2] + onset_integrals[2*i+3] - onset_integrals[2*i-1] - onset_integrals[2*i-2]
		for j in range(1,16):
			onset_correlations[i][5 + j] = onset_integrals[2*i + j] - onset_integrals[2*i]
		
			
	# Include the MFCC coefficients as features
	result = onset_correlations[frame_indexer]
	return preprocessing.scale(result)