コード例 #1
0
def _calculate_free_cov_msm(
    internal_estimates,
    internal_jacobian,
    internal_moments_cov,
    internal_weights,
    converter,
    method,
    n_samples,
    bounds_handling,
    seed,
):

    if method == "optimal":
        internal_cov = cov_optimal(internal_jacobian, internal_weights)
    else:
        internal_cov = cov_robust(internal_jacobian, internal_weights,
                                  internal_moments_cov)

    rng = get_rng(seed)

    free_cov = transform_covariance(
        internal_params=internal_estimates,
        internal_cov=internal_cov,
        converter=converter,
        n_samples=n_samples,
        rng=rng,
        bounds_handling=bounds_handling,
    )
    return free_cov
コード例 #2
0
def test_transform_covariance_invalid_bounds():
    rng = get_rng(seed=1234)

    internal_cov = np.eye(2)

    converter = FakeConverter()
    internal_params = FakeInternalParams(lower_bounds=np.ones(2),
                                         upper_bounds=np.ones(2))

    with pytest.raises(ValueError):
        transform_covariance(
            internal_params=internal_params,
            internal_cov=internal_cov,
            converter=converter,
            rng=rng,
            n_samples=10,
            bounds_handling="raise",
        )
コード例 #3
0
def test_transform_covariance_no_bounds():
    internal_cov = np.eye(2)

    converter = FakeConverter()
    internal_params = FakeInternalParams()

    got = transform_covariance(
        internal_params=internal_params,
        internal_cov=internal_cov,
        converter=converter,
        rng=get_rng(seed=5687),
        n_samples=100,
        bounds_handling="ignore",
    )

    expected_sample = get_rng(seed=5687).multivariate_normal(
        np.arange(2), np.eye(2), 100)
    expected = np.cov(expected_sample, rowvar=False)

    aaae(got, expected)
コード例 #4
0
def test_transform_covariance_with_clipping():
    rng = get_rng(seed=1234)

    internal_cov = np.eye(2)

    converter = FakeConverter()
    internal_params = FakeInternalParams(lower_bounds=np.ones(2),
                                         upper_bounds=np.ones(2))

    got = transform_covariance(
        internal_params=internal_params,
        internal_cov=internal_cov,
        converter=converter,
        rng=rng,
        n_samples=100,
        bounds_handling="clip",
    )

    expected = np.zeros((2, 2))

    aaae(got, expected)
コード例 #5
0
def _calculate_free_cov_ml(
    method,
    internal_estimates,
    converter,
    internal_jacobian,
    internal_hessian,
    n_samples,
    design_info,
    bounds_handling,
    seed,
):
    if method == "jacobian":
        int_cov = cov_jacobian(internal_jacobian)
    elif method == "hessian":
        int_cov = cov_hessian(internal_hessian)
    elif method == "robust":
        int_cov = cov_robust(jac=internal_jacobian, hess=internal_hessian)
    elif method == "cluster_robust":
        int_cov = cov_cluster_robust(jac=internal_jacobian,
                                     hess=internal_hessian,
                                     design_info=design_info)
    elif method == "strata_robust":
        int_cov = cov_strata_robust(jac=internal_jacobian,
                                    hess=internal_hessian,
                                    design_info=design_info)

    rng = get_rng(seed)

    free_cov = transform_covariance(
        internal_params=internal_estimates,
        internal_cov=int_cov,
        converter=converter,
        rng=rng,
        n_samples=n_samples,
        bounds_handling=bounds_handling,
    )
    return free_cov
コード例 #6
0
            jac=int_jac, hess=int_hess, design_info=design_info)
    if "strata_robust" in cov_cases:
        int_covs["cov_strata_robust"] = cov_strata_robust(
            jac=int_jac, hess=int_hess, design_info=design_info)

    # ==================================================================================
    # Calculate all available external covs and summaries
    # ==================================================================================

    covs = {}
    summaries = {}
    for case in cov_cases:
        cov = transform_covariance(
            params=estimates,
            internal_cov=int_covs[f"cov_{case}"],
            constraints=constraints,
            n_samples=n_samples,
            bounds_handling=bounds_handling,
        )
        summary = calculate_inference_quantities(
            params=estimates,
            free_cov=cov,
            ci_level=ci_level,
        )

        covs[f"cov_{case}"] = cov
        summaries[f"summary_{case}"] = summary

    # ==================================================================================
    # Calculate external jac and hess (if no transforming constraints)
    # ==================================================================================
コード例 #7
0
    )

    if cov_type == "jacobian":
        numdiff_options = numdiff_options.copy()
        numdiff_options["key"] = "contributions"

        internal_jac = first_derivative(
            internal_loglike,
            internal_params,
            **numdiff_options,
        )
        internal_cov = cov_jacobian(internal_jac)
    else:
        raise NotImplementedError(
            "Hessian calculation is not yet implemented.")

    # transform internal covariance matrix
    free_cov = transform_covariance(
        params=params,
        internal_cov=internal_cov,
        constraints=constraints,
        n_samples=n_samples,
        bounds_handling=bounds_handling,
    )

    # calculate quantities
    inference_quantities = calculate_inference_quantities(params=params,
                                                          free_cov=free_cov)

    return inference_quantities, free_cov